首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This article analyses a divergent supply chain consisting of a central warehouse and N nonidentical retailers. The focus is on joint evaluation of inventory replenishment and shipment consolidation effects. A time‐based dispatching and shipment consolidation policy is used at the warehouse in conjunction with real‐time point‐of‐sale data and centralized inventory information. This represents a common situation, for example, in various types of vendor managed inventory systems. The main contribution is the derivation of an exact recursive procedure for determining the expected inventory holding and backorder costs for the system, under the assumption of Poisson demand. Two heuristics for determining near optimal shipment intervals are also presented. The results are applicable both for single‐item and multiitem systems. © 2011 Wiley Periodicals, Inc. Naval Research Logistics 58: 59–71, 2011  相似文献   

2.
In this article, we introduce the capacitated warehouse location model with risk pooling (CLMRP), which captures the interdependence between capacity issues and the inventory management at the warehouses. The CLMRP models a logistics system in which a single plant ships one type of product to a set of retailers, each with an uncertain demand. Warehouses serve as the direct intermediary between the plant and the retailers for the shipment of the product and also retain safety stock to provide appropriate service levels to the retailers. The CLMRP minimizes the sum of the fixed facility location, transportation, and inventory carrying costs. The model simultaneously determines warehouse locations, shipment sizes from the plant to the warehouses, the working inventory, and safety stock levels at the warehouses and the assignment of retailers to the warehouses. The costs at each warehouse exhibit initially economies of scale and then an exponential increase due to the capacity limitations. We show that this problem can be formulated as a nonlinear integer program in which the objective function is neither concave nor convex. A Lagrangian relaxation solution algorithm is proposed. The Lagrangian subproblem is also a nonlinear integer program. An efficient algorithm is developed for the linear relaxation of this subproblem. The Lagrangian relaxation algorithm provides near‐optimal solutions with reasonable computational requirements for large problem instances. © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   

3.
We consider a multi‐stage inventory system composed of a single warehouse that receives a single product from a single supplier and replenishes the inventory of n retailers through direct shipments. Fixed costs are incurred for each truck dispatched and all trucks have the same capacity limit. Costs are stationary, or more generally monotone as in Lippman (Management Sci 16, 1969, 118–138). Demands for the n retailers over a planning horizon of T periods are given. The objective is to find the shipment quantities over the planning horizon to satisfy all demands at minimum system‐wide inventory and transportation costs without backlogging. Using the structural properties of optimal solutions, we develop (1) an O(T2) algorithm for the single‐stage dynamic lot sizing problem; (2) an O(T3) algorithm for the case of a single‐warehouse single‐retailer system; and (3) a nested shortest‐path algorithm for the single‐warehouse multi‐retailer problem that runs in polynomial time for a given number of retailers. To overcome the computational burden when the number of retailers is large, we propose aggregated and disaggregated Lagrangian decomposition methods that make use of the structural properties and the efficient single‐stage algorithm. Computational experiments show the effectiveness of these algorithms and the gains associated with coordinated versus decentralized systems. Finally, we show that the decentralized solution is asymptotically optimal. © 2009 Wiley Periodicals, Inc. Naval Research Logistics 2009  相似文献   

4.
We consider a two‐echelon inventory system with a manufacturer operating from a warehouse supplying multiple distribution centers (DCs) that satisfy the demand originating from multiple sources. The manufacturer has a finite production capacity and production times are stochastic. Demand from each source follows an independent Poisson process. We assume that the transportation times between the warehouse and DCs may be positive which may require keeping inventory at both the warehouse and DCs. Inventory in both echelons is managed using the base‐stock policy. Each demand source can procure the product from one or more DCs, each incurring a different fulfilment cost. The objective is to determine the optimal base‐stock levels at the warehouse and DCs as well as the assignment of the demand sources to the DCs so that the sum of inventory holding, backlog, and transportation costs is minimized. We obtain a simple equation for finding the optimal base‐stock level at each DC and an upper bound for the optimal base‐stock level at the warehouse. We demonstrate several managerial insights including that the demand from each source is optimally fulfilled entirely from a single distribution center, and as the system's utilization approaches 1, the optimal base‐stock level increases in the transportation time at a rate equal to the demand rate arriving at the DC. © 2011 Wiley Periodicals, Inc. Naval Research Logistics, 2011  相似文献   

5.
A paradox arises when a transportation problem admits to a total cost solution which is lower than the optimum and is attainable by shipping larger quantities of goods over the same routes that were previously designated as optimal. That is, falling total costs are present in moving to the greater shipment quantities. Necessary conditions for this to occur are established and an algorithm for solving this expanded transportation problem is supplied.  相似文献   

6.
We consider a two‐level system in which a warehouse manages the inventories of multiple retailers. Each retailer employs an order‐up‐to level inventory policy over T periods and faces an external demand which is dynamic and known. A retailer's inventory should be raised to its maximum limit when replenished. The problem is to jointly decide on replenishment times and quantities of warehouse and retailers so as to minimize the total costs in the system. Unlike the case in the single level lot‐sizing problem, we cannot assume that the initial inventory will be zero without loss of generality. We propose a strong mixed integer program formulation for the problem with zero and nonzero initial inventories at the warehouse. The strong formulation for the zero initial inventory case has only T binary variables and represents the convex hull of the feasible region of the problem when there is only one retailer. Computational results with a state‐of‐the art solver reveal that our formulations are very effective in solving large‐size instances to optimality. © 2010 Wiley Periodicals, Inc. Naval Research Logistics, 2010  相似文献   

7.
We consider a distribution system consisting of a central warehouse and a group of retailers facing independent stochastic demand. The retailers replenish from the warehouse, and the warehouse from an outside supplier with ample supply. Time is continuous. Most previous studies on inventory control policies for this system have considered stock‐based batch‐ordering policies. We develop a time‐based joint‐replenishment policy in this study. Let the warehouse set up a basic replenishment interval. The retailers are replenished through the warehouse in intervals that are integer multiples of the basic replenishment interval. No inventory is carried at the warehouse. We provide an exact evaluation of the long‐term average system costs under the assumption that stock can be balanced among the retailers. The structural properties of the inventory system are characterized. We show that, although it is well known that stock‐based inventory control policies dominate time‐based inventory control policies at a single facility, this dominance does not hold for distribution systems with multiple retailers and stochastic demand. This is because the latter can provide a more efficient mechanism to streamline inventory flow and pool retailer demand, even though the former may be able to use more updated stock information to optimize system performance. The findings of the study provide insights about the key factors that drive the performance of a multiechelon inventory control system. © 2013 Wiley Periodicals, Inc. Naval Research Logistics 60: 637–651, 2013  相似文献   

8.
This paper presents a one-period two-echelon inventory model with one warehouse in the first echelon and n warehouses in the second echelon. At the beginning of the period the stock levels at all facilities are adjusted by purchasing or disposing of items at the first echelon, returning or shipping items between the echelons and transshipping items within the second echelon. During the period, demands (which may be negative) are placed on all warehouses in the second echelon and an attempt is made to satisfy shortages either by an expedited shipment from the first echelon to the second echelon or an expedited transshipment within the second echelon. The decision problem is to choose an initial stock level at the first echelon (by a purchase or a disposition) and an initial allocation so as to minimize the initial stock movement costs during the period plus inventory carrying costs and system shortage costs at the end of the period. It is shown that the objective function takes on one of four forms, depending on the relative magnitudes of the various shipping costs. All four forms of the objective function are derived and proven to be convex. Several applications of this general model are considered. We also consider multi-period extensions of the general model and an important special case is solved explicitly.  相似文献   

9.
This paper introduces a new replenishment policy for inventory control in a two‐level distribution system consisting of one central warehouse and an arbitrary number of nonidentical retailers. The new policy is designed to control the replenishment process at the central warehouse, using centralized information regarding the inventory positions and demand processes of all installations in the system. The retailers on the other hand are assumed to use continuous review (R, Q) policies. A technique for exact evaluation of the expected inventory holding and backorder costs for the system is presented. Numerical results indicate that there are cases when considerable savings can be made by using the new (α0, Q0) policy instead of a traditional echelon‐ or installation‐stock (R, Q) policy. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 798–822, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/nav.10040  相似文献   

10.
We study a stochastic inventory model of a firm that periodically orders a product from a make‐to‐order manufacturer. Orders can be shipped by a combination of two freight modes that differ in lead‐times and costs, although orders are not allowed to cross. Placing an order as well as each use of each freight mode has a fixed and a quantity proportional cost. The decision of how to allocate units between the two freight modes utilizes information about demand during the completion of manufacturing. We derive the optimal freight mode allocation policy, and show that the optimal policy for placing orders is not an (s,S) policy in general. We provide tight bounds for the optimal policy that can be calculated by solving single period problems. Our analysis enables insights into the structure of the optimal policy specifying the conditions under which it simplifies to an (s,S) policy. We characterize the best (s,S) policy for our model, and through extensive numerical investigation show that its performance is comparable with the optimal policy in most cases. Our numerical study also sheds light on the benefits of the dual freight model over the single freight models. © 2011 Wiley Periodicals, Inc. Naval Research Logistics, 2011  相似文献   

11.
A two‐echelon distribution inventory system with a central warehouse and a number of retailers is considered. The retailers face stochastic demand and replenish from the warehouse, which, in turn, replenishes from an outside supplier. The system is reviewed continuously and demands that cannot be met directly are backordered. Standard holding and backorder costs are considered. In the literature on multi‐echelon inventory control it is standard to assume that backorders at the warehouse are served according to a first come–first served policy (FCFS). This allocation rule simplifies the analysis but is normally not optimal. It is shown that the FCFS rule can, in the worst case, lead to an asymptotically unbounded relative cost increase as the number of retailers approaches infinity. We also provide a new heuristic that will always give a reduction of the expected costs. A numerical study indicates that the average cost reduction when using the heuristic is about two percent. The suggested heuristic is also compared with two existing heuristics. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   

12.
The objective of this paper is to determine the optimum inventory policy for a multi-product periodic review dynamic inventory system. At the beginning of each period two decisions are made for each product. How much to “normal order” with a lead time of λn periods and how much to “emergency order” with a lead time of λe periods, where λe = λn - 1. It is assumed that the emergency ordering costs are higher than the normal ordering costs. The demands for each product in successive periods are assumed to form a sequence of independent identically distributed random variables with known densities. Demands for individual products within a period are assumed to be non-negative, but they need not be independent. Whenever demand exceeds inventory their difference is backlogged rather than lost. The ordering decisions are based on certain costs and two revenue functions. Namely, the procurement costs which are assumed to be linear for both methods of ordering, convex holding and penalty costs, concave salvage gain functions, and linear credit functions. There is a restriction on the total amount that can be emergency ordered for all products. The optimal ordering policy is determined for the one and N-period models.  相似文献   

13.
A major challenge in making supply meet demand is to coordinate transshipments across the supply chain to reduce costs and increase service levels in the face of demand fluctuations, short lead times, warehouse limitations, and transportation and inventory costs. In particular, transshipment through crossdocks, where just‐in‐time objectives prevail, requires precise scheduling between suppliers, crossdocks, and customers. In this work, we study the transshipment problem with supplier and customer time windows where flow is constrained by transportation schedules and warehouse capacities. Transportation is provided by fixed or flexible schedules and lot‐sizing is dealt with through multiple shipments. We develop polynomial‐time algorithms or, otherwise, provide the complexity of the problems studied. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005  相似文献   

14.
This study addresses the design of a three‐stage production/distribution system where the first stage includes the set of established retailers and the second and third stages include the sets of potential distribution centers (DCs) and potential capacitated suppliers, respectively. In this problem, in addition to the fixed location/operating costs associated with locating DCs and suppliers, we consider the coordinated inventory replenishment decisions at the located DCs and retailers along with the appropriate inventory costs explicitly. In particular, we account for the replenishment and holding costs at the retailers and selected DCs, and the fixed plus distance‐based transportation costs between the selected plants and their assigned DCs, and between the selected DCs and their respective retailers, explicitly. The resulting formulation is a challenging mixed‐integer nonlinear programming model for which we propose efficient heuristic solution approaches. Our computational results demonstrate the performance of the heuristic approaches as well as the value of integrated decision‐making by verifying that significant cost savings are realizable when the inventory decisions and costs are incorporated in the production distribution system design. © 2012 Wiley Periodicals, Inc. Naval Research Logistics 59: 172–195, 2012  相似文献   

15.
Traditional inventory systems treat all demands of a given item equally. This approach is optimal if the penalty costs of all customers are the same, but it is not optimal if the penalty costs are different for different customer classes. Then, demands of customers with high penalty costs must be filled before demands of customers with low penalty costs. A commonly used inventory policy for dealing with demands with different penalty costs is the critical level inventory policy. Under this policy demands with low penalty costs are filled as long as inventory is above a certain critical level. If the inventory reaches the critical level, only demands with high penalty costs are filled and demands with low penalty costs are backordered. In this article, we consider a critical level policy for a periodic review inventory system with two demand classes. Because traditional approaches cannot be used to find the optimal parameters of the policy, we use a multidimensional Markov chain to model the inventory system. We use a sample path approach to prove several properties of this inventory system. Although the cost function is not convex, we can build on these properties to develop an optimization approach that finds the optimal solution. We also present some numerical results. © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   

16.
This paper considers a warehouse sizing problem whose objective is to minimize the total cost of ordering, holding, and warehousing of inventory. Unlike typical economic lot sizing models, the warehousing cost structure examined here is not the simple unit rate type, but rather a more realistic step function of the warehouse space to be acquired. In the cases when only one type of stock‐keeping unit (SKU) is warehoused, or when multiple SKUs are warehoused, but, with separable inventory costs, closed form solutions are obtained for the optimal warehouse size. For the case of multi‐SKUs with joint inventory replenishment cost, a heuristic with a provable performance bound of 94% is provided. © 2001 John Wiley & Sons, Inc. Naval Research Logistics 48: 299–312, 2001  相似文献   

17.
A dynamic version of the transportation (Hitchcock) problem occurs when there are demands at each of n sinks for T periods which can be fulfilled by shipments from m sources. A requirement in period t2 can be satisfied by a shipment in the same period (a linear shipping cost is incurred) or by a shipment in period t1 < t2 (in addition to the linear shipping cost a linear inventory cost is incurred for every period in which the commodity is stored). A well known method for solving this problem is to transform it into an equivalent single period transportation problem with mT sources and nT sinks. Our approach treats the model as a transshipment problem consisting of T, m source — n sink transportation problems linked together by inventory variables. Storage requirements are proportional to T2 for the single period equivalent transportation algorithm, proportional to T, for our algorithm without decomposition, and independent of T for our algorithm with decomposition. This storage saving feature enables much larger problems to be solved than were previously possible. Futhermore, we can easily incorporate upper bounds on inventories. This is not possible in the single period transportation equivalent.  相似文献   

18.
We incorporate strategic customer waiting behavior in the classical economic order quantity (EOQ) setting. The seller determines not only the timing and quantities of the inventory replenishment, but also the selling prices over time. While similar ideas of market segmentation and intertemporal price discrimination can be carried over from the travel industries to other industries, inventory replenishment considerations common to retail outlets and supermarkets introduce additional features to the optimal pricing scheme. Specifically, our study provides concrete managerial recommendations that are against the conventional wisdom on “everyday low price” (EDLP) versus “high-low pricing” (Hi-Lo). We show that in the presence of inventory costs and strategic customers, Hi-Lo instead of EDLP is optimal when customers have homogeneous valuations. This result suggests that because of strategic customer behavior, the seller obtains a new source of flexibility—the ability to induce customers to wait—which always leads to a strictly positive increase of the seller's profit. Moreover, the optimal inventory policy may feature a dry period with zero inventory, but this period does not necessarily result in a loss of sales as customers strategically wait for the upcoming promotion. Furthermore, we derive the solution approach for the optimal policy under heterogeneous customer valuation setting. Under the optimal policy, the replenishments and price promotions are synchronized, and the seller adopts high selling prices when the inventory level is low and plans a discontinuous price discount at the replenishment point when inventory is the highest.  相似文献   

19.
This paper is concerned with the determination of explicit expressions for economic order quantities and reorder levels, such that the cost of ordering and holding inventory is minimized for specific backorder constraints. Holding costs are applied either to inventory position or on-hand inventory, and the backorder constraint is considered in terms of the total number of backorders per year or the average number of backorders at any point in time. Through the substitution of a new probability density function in place of the normal p.d.f., explicit expressions are determined for the economic order quantities and the reorder points. The resulting economic order quantities are independent of all backorder constraints. It is also concluded that under certain conditions, the minimization of ordering costs and inventory holding costs (applied to inventory position), subject to a backorder constraint, is equivalent in terms of reorder levels to minimization of the safety level dollar investment subject to the same backorder constraint.  相似文献   

20.
This paper investigates the effect on the optimum solution of a (capacitated) transportation problem when the data of the problem (the rim conditions-i. e., the warehouse supplies and market demands-the per unit transportation costs and the upper bounds) are continuously varied as a (linear) function of a single parameter. An operator theory is developed and algorithms provided for applying rim and cost operators that effect the transformation of optimum solution associated with changes in rim conditions and unit costs. Bound operators that effect changes in upper bounds are shown to be equivalent to rim operators. The discussion in this paper is limited to basis preserving operators for which the changes in the data are such that the optimum basis structures are preserved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号