首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We consider a two‐level system in which a warehouse manages the inventories of multiple retailers. Each retailer employs an order‐up‐to level inventory policy over T periods and faces an external demand which is dynamic and known. A retailer's inventory should be raised to its maximum limit when replenished. The problem is to jointly decide on replenishment times and quantities of warehouse and retailers so as to minimize the total costs in the system. Unlike the case in the single level lot‐sizing problem, we cannot assume that the initial inventory will be zero without loss of generality. We propose a strong mixed integer program formulation for the problem with zero and nonzero initial inventories at the warehouse. The strong formulation for the zero initial inventory case has only T binary variables and represents the convex hull of the feasible region of the problem when there is only one retailer. Computational results with a state‐of‐the art solver reveal that our formulations are very effective in solving large‐size instances to optimality. © 2010 Wiley Periodicals, Inc. Naval Research Logistics, 2010  相似文献   

2.
We consider a distribution system consisting of a central warehouse and a group of retailers facing independent stochastic demand. The retailers replenish from the warehouse, and the warehouse from an outside supplier with ample supply. Time is continuous. Most previous studies on inventory control policies for this system have considered stock‐based batch‐ordering policies. We develop a time‐based joint‐replenishment policy in this study. Let the warehouse set up a basic replenishment interval. The retailers are replenished through the warehouse in intervals that are integer multiples of the basic replenishment interval. No inventory is carried at the warehouse. We provide an exact evaluation of the long‐term average system costs under the assumption that stock can be balanced among the retailers. The structural properties of the inventory system are characterized. We show that, although it is well known that stock‐based inventory control policies dominate time‐based inventory control policies at a single facility, this dominance does not hold for distribution systems with multiple retailers and stochastic demand. This is because the latter can provide a more efficient mechanism to streamline inventory flow and pool retailer demand, even though the former may be able to use more updated stock information to optimize system performance. The findings of the study provide insights about the key factors that drive the performance of a multiechelon inventory control system. © 2013 Wiley Periodicals, Inc. Naval Research Logistics 60: 637–651, 2013  相似文献   

3.
We consider a two‐stage supply chain, in which multi‐items are shipped from a manufacturing facility or a central warehouse to a downstream retailer that faces deterministic external demand for each of the items over a finite planning horizon. The items are shipped through identical capacitated vehicles, each incurring a fixed cost per trip. In addition, there exist item‐dependent variable shipping costs and inventory holding costs at the retailer for items stored at the end of the period; these costs are constant over time. The sum of all costs must be minimized while satisfying the external demand without backlogging. In this paper we develop a search algorithm to solve the problem optimally. Our search algorithm, although exponential in the worst case, is very efficient empirically due to new properties of the optimal solution that we found, which allow us to restrict the number of solutions examined. Second, we perform a computational study that compares the empirical running time of our search methods to other available exact solution methods to the problem. Finally, we characterize the conditions under which each of the solution methods is likely to be faster than the others and suggest efficient heuristic solutions that we recommend using when the problem is large in all dimensions. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2006.  相似文献   

4.
This article analyses a divergent supply chain consisting of a central warehouse and N nonidentical retailers. The focus is on joint evaluation of inventory replenishment and shipment consolidation effects. A time‐based dispatching and shipment consolidation policy is used at the warehouse in conjunction with real‐time point‐of‐sale data and centralized inventory information. This represents a common situation, for example, in various types of vendor managed inventory systems. The main contribution is the derivation of an exact recursive procedure for determining the expected inventory holding and backorder costs for the system, under the assumption of Poisson demand. Two heuristics for determining near optimal shipment intervals are also presented. The results are applicable both for single‐item and multiitem systems. © 2011 Wiley Periodicals, Inc. Naval Research Logistics 58: 59–71, 2011  相似文献   

5.
We develop a competitive pricing model which combines the complexity of time‐varying demand and cost functions and that of scale economies arising from dynamic lot sizing costs. Each firm can replenish inventory in each of the T periods into which the planning horizon is partitioned. Fixed as well as variable procurement costs are incurred for each procurement order, along with inventory carrying costs. Each firm adopts, at the beginning of the planning horizon, a (single) price to be employed throughout the horizon. On the basis of each period's system of demand equations, these prices determine a time series of demands for each firm, which needs to service them with an optimal corresponding dynamic lot sizing plan. We establish the existence of a price equilibrium and associated optimal dynamic lotsizing plans, under mild conditions. We also design efficient procedures to compute the equilibrium prices and dynamic lotsizing plans.© 2008 Wiley Periodicals, Inc. Naval Research Logistics 2009  相似文献   

6.
This paper introduces a new replenishment policy for inventory control in a two‐level distribution system consisting of one central warehouse and an arbitrary number of nonidentical retailers. The new policy is designed to control the replenishment process at the central warehouse, using centralized information regarding the inventory positions and demand processes of all installations in the system. The retailers on the other hand are assumed to use continuous review (R, Q) policies. A technique for exact evaluation of the expected inventory holding and backorder costs for the system is presented. Numerical results indicate that there are cases when considerable savings can be made by using the new (α0, Q0) policy instead of a traditional echelon‐ or installation‐stock (R, Q) policy. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 798–822, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/nav.10040  相似文献   

7.
A two‐echelon distribution inventory system with a central warehouse and a number of retailers is considered. The retailers face stochastic demand and replenish from the warehouse, which, in turn, replenishes from an outside supplier. The system is reviewed continuously and demands that cannot be met directly are backordered. Standard holding and backorder costs are considered. In the literature on multi‐echelon inventory control it is standard to assume that backorders at the warehouse are served according to a first come–first served policy (FCFS). This allocation rule simplifies the analysis but is normally not optimal. It is shown that the FCFS rule can, in the worst case, lead to an asymptotically unbounded relative cost increase as the number of retailers approaches infinity. We also provide a new heuristic that will always give a reduction of the expected costs. A numerical study indicates that the average cost reduction when using the heuristic is about two percent. The suggested heuristic is also compared with two existing heuristics. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   

8.
We address infinite‐horizon models for oligopolies with competing retailers under demand uncertainty. We characterize the equilibrium behavior which arises under simple wholesale pricing schemes. More specifically, we consider a periodic review, infinite‐horizon model for a two‐echelon system with a single supplier servicing a network of competing retailers. In every period, each retailer faces a random demand volume, the distribution of which depends on his own retail price as well as those charged by possibly all competing retailers. We also derive various comparative statics results regarding the impact several exogenous system parameters (e.g., cost or distributional parameters) have on the equilibrium decisions of the retailers as well as their expected profits. We show that certain monotonicity properties, engrained in folklore as well as in known inventory models for centralized systems, may break down in decentralized chains under retailer competition. Our results can be used to optimize the aggregate profits in the supply chain (i.e., those of the supplier and all retailers) by implementing a specific wholesale pricing scheme. © 2003 Wiley Periodicals, Inc. Naval Research Logistics, 2004.  相似文献   

9.
This paper studies a periodic‐review pricing and inventory control problem for a retailer, which faces stochastic price‐sensitive demand, under quite general modeling assumptions. Any unsatisfied demand is lost, and any leftover inventory at the end of the finite selling horizon has a salvage value. The cost component for the retailer includes holding, shortage, and both variable and fixed ordering costs. The retailer's objective is to maximize its discounted expected profit over the selling horizon by dynamically deciding on the optimal pricing and replenishment policy for each period. We show that, under a mild assumption on the additive demand function, at the beginning of each period an (s,S) policy is optimal for replenishment, and the value of the optimal price depends on the inventory level after the replenishment decision has been done. Our numerical study also suggests that for a sufficiently long selling horizon, the optimal policy is almost stationary. Furthermore, the fixed ordering cost (K) plays a significant role in our modeling framework. Specifically, any increase in K results in lower s and higher S. On the other hand, the profit impact of dynamically changing the retail price, contrasted with a single fixed price throughout the selling horizon, also increases with K. We demonstrate that using the optimal policy values from a model with backordering of unmet demands as approximations in our model might result in significant profit penalty. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2006  相似文献   

10.
Consider a distribution system with a central warehouse and multiple retailers. Customer demand arrives at each of the retailers continuously at a constant rate. The retailers replenish their inventories from the warehouse which in turn orders from an outside supplier with unlimited stock. There are economies of scale in replenishing the inventories at both the warehouse and the retail level. Stockouts at the retailers are backlogged. The system incurs holding and backorder costs. The objective is to minimize the long‐run average total cost in the system. This paper studies the cost effectiveness of (R, Q) policies in the above system. Under an (R, Q) policy, each facility orders a fixed quantity Q from its supplier every time its inventory position reaches a reorder point R. It is shown that (R, Q) policies are at least 76% effective. Numerical examples are provided to further illustrate the cost effectiveness of (R, Q) policies. © 2000 John Wiley & Sons, Inc. Naval Research Logistics 47: 422–439, 2000  相似文献   

11.
This article studies the classical single‐item economic lot‐sizing problem with constant capacities, fixed‐plus‐linear order costs, and concave inventory costs, where backlogging is allowed. We propose an O(T3) optimal algorithm for the problem, which improves upon the O(T4) running time of the famous algorithm developed by Florian and Klein (Manage Sci18 (1971) 12–20). Instead of using the standard dynamic programming approach by predetermining the minimal cost for every possible subplan, we develop a backward dynamic programming algorithm to obtain a more efficient implementation. © 2012 Wiley Periodicals, Inc. Naval Research Logistics, 2012  相似文献   

12.
We consider the Inventory‐Routing Problem (IRP) where n geographically dispersed retailers must be supplied by a central facility. The retailers experience demand for the product at a deterministic rate, and incur holding costs for keeping inventory. Distribution is performed by a fleet of capacitated vehicles. The objective is to minimize the average transportation and inventory costs per unit time over the infinite horizon. We focus on the set of Fixed Partition Policies (FPP). In an FPP, the retailers are partitioned into disjoint and collectively exhaustive sets. Each set of retailers is served independently of the others and at its optimal replenishment rate. Previous research has measured the effectiveness of an FPP solution relative to a lower bound over all policies. We propose an additional measure that is relative to the optimal FPP. In this paper we construct a polynomial‐time partitioning scheme that is shown to yield an FPP whose cost is asymptotically within 1.5% + ? of the cost of an optimal FPP, for arbitrary ? > 0. In addition, in some cases, our polynomial‐time scheme yields an FPP whose cost is asymptotically within 1.5% + ? of the minimal policy's cost (over all feasible policies). © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004  相似文献   

13.
In this article, we introduce the capacitated warehouse location model with risk pooling (CLMRP), which captures the interdependence between capacity issues and the inventory management at the warehouses. The CLMRP models a logistics system in which a single plant ships one type of product to a set of retailers, each with an uncertain demand. Warehouses serve as the direct intermediary between the plant and the retailers for the shipment of the product and also retain safety stock to provide appropriate service levels to the retailers. The CLMRP minimizes the sum of the fixed facility location, transportation, and inventory carrying costs. The model simultaneously determines warehouse locations, shipment sizes from the plant to the warehouses, the working inventory, and safety stock levels at the warehouses and the assignment of retailers to the warehouses. The costs at each warehouse exhibit initially economies of scale and then an exponential increase due to the capacity limitations. We show that this problem can be formulated as a nonlinear integer program in which the objective function is neither concave nor convex. A Lagrangian relaxation solution algorithm is proposed. The Lagrangian subproblem is also a nonlinear integer program. An efficient algorithm is developed for the linear relaxation of this subproblem. The Lagrangian relaxation algorithm provides near‐optimal solutions with reasonable computational requirements for large problem instances. © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   

14.
Consider an N‐item, periodic review, infinite‐horizon, undiscounted, inventory model with stochastic demands, proportional holding and shortage costs, and full backlogging. For 1 ≤ jN, orders for item j can arrive in every period, and the cost of receiving them is negligible (as in a JIT setting). Every Tj periods, one reviews the current stock level of item j and decides on deliveries for each of the next Tj periods, thus incurring an item‐by‐item fixed cost kj. There is also a joint fixed cost whenever any item is reviewed. The problem is to find review periods T1, T2, …, TN and an ordering policy satisfying the average cost criterion. The current article builds on earlier results for the single‐item case. We prove an optimal policy exists, give conditions where it has a simple form, and develop a branch and bound algorithm for its computation. We also provide two heuristic policies with O(N) computational requirements. Computational experiments indicate that the branch and bound algorithm can handle normal demand problems with N ≤ 10 and that both heuristics do well for a wide variety of problems with N ranging from 2 to 200; moreover, the performance of our heuristics seems insensitive to N. © 2001 John Wiley & Sons, Inc. Naval Research Logistics 48:430–449, 2001  相似文献   

15.
16.
This paper develops a new model for allocating demand from retailers (or customers) to a set of production/storage facilities. A producer manufactures a product in multiple production facilities, and faces demand from a set of retailers. The objective is to decide which of the production facilities should satisfy each retailer's demand, in order minimize total production, inventory holding, and assignment costs (where the latter may include, for instance, variable production costs and transportation costs). Demand occurs continuously in time at a deterministic rate at each retailer, while each production facility faces fixed‐charge production costs and linear holding costs. We first consider an uncapacitated model, which we generalize to allow for production or storage capacities. We then explore situations with capacity expansion opportunities. Our solution approach employs a column generation procedure, as well as greedy and local improvement heuristic approaches. A broad class of randomly generated test problems demonstrates that these heuristics find high quality solutions for this large‐scale cross‐facility planning problem using a modest amount of computation time. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005.  相似文献   

17.
We study a selling practice that we refer to as locational tying (LT), which seems to be gaining wide popularity among retailers. Under this strategy, a retailer “locationally ties” two complementary items that we denote by “primary” and “secondary.” The retailer sells the primary item in an appropriate “department” of his or her store. To stimulate demand, the secondary item is offered in the primary item's department, where it is displayed in very close proximity to the primary item. We consider two variations of LT: In the multilocation tying strategy (LT‐M), the secondary item is offered in its appropriate department in addition to the primary item's department, whereas in the single‐location tying strategy (LT‐S), it is offered only in the primary item's location. We compare these LT strategies to the traditional independent components (IC) strategy, in which the two items are sold independently (each in its own department), but the pricing/inventory decisions can be centralized (IC‐C) or decentralized (IC‐D). Assuming ample inventory, we compare and provide a ranking of the optimal prices of the four strategies. The main insight from this comparison is that relative to IC‐D, LT decreases the price of the primary item and adjusts the price of the secondary item up or down depending on its popularity in the primary item's department. We also perform a comparative statics analysis on the effect of demand and cost parameters on the optimal prices of various strategies, and identify the conditions that favor one strategy over others in terms of profitability. Then we study inventory decisions in LT under exogenous pricing by developing a model that accounts for the effect of the primary item's stock‐outs on the secondary item's demand. We find that, relative to IC‐D, LT increases the inventory level of the primary item. We also link the profitability of different strategies to the trade‐off between the increase in demand volume of the secondary item as a result of LT and the potential increase in inventory costs due to decentralizing the inventory of the secondary item. © 2009 Wiley Periodicals, Inc. Naval Research Logistics 2009  相似文献   

18.
Consider a single‐item, periodic review, infinite‐horizon, undiscounted, inventory model with stochastic demands, proportional holding and shortage costs, and full backlogging. Orders can arrive in every period, and the cost of receiving them is negligible (as in a JIT setting). Every T periods, one audits the current stock level and decides on deliveries for the next T periods, thus incurring a fixed audit cost and—when one schedules deliveries—a fixed order cost. The problem is to find a review period T and an ordering policy that satisfy the average cost criterion. The current article extends an earlier treatment of this problem, which assumed that the fixed order cost is automatically incurred once every T periods. We characterize an optimal ordering policy when T is fixed, prove that an optimal review period T** exists, and develop a global search algorithm for its computation. We also study the behavior of four approximations to T** based on the assumption that the fixed order cost is incurred during every cycle. Analytic results from a companion article (where μ/σ is large) and extensive computational experiments with normal and gamma demand test problems suggest these approximations and associated heuristic policies perform well when μ/σ ≥ 2. © 2000 John Wiley & Sons, Inc. Naval Research Logistics 47: 329–352, 2000  相似文献   

19.
We consider a two‐echelon inventory system with a manufacturer operating from a warehouse supplying multiple distribution centers (DCs) that satisfy the demand originating from multiple sources. The manufacturer has a finite production capacity and production times are stochastic. Demand from each source follows an independent Poisson process. We assume that the transportation times between the warehouse and DCs may be positive which may require keeping inventory at both the warehouse and DCs. Inventory in both echelons is managed using the base‐stock policy. Each demand source can procure the product from one or more DCs, each incurring a different fulfilment cost. The objective is to determine the optimal base‐stock levels at the warehouse and DCs as well as the assignment of the demand sources to the DCs so that the sum of inventory holding, backlog, and transportation costs is minimized. We obtain a simple equation for finding the optimal base‐stock level at each DC and an upper bound for the optimal base‐stock level at the warehouse. We demonstrate several managerial insights including that the demand from each source is optimally fulfilled entirely from a single distribution center, and as the system's utilization approaches 1, the optimal base‐stock level increases in the transportation time at a rate equal to the demand rate arriving at the DC. © 2011 Wiley Periodicals, Inc. Naval Research Logistics, 2011  相似文献   

20.
This article investigates the optimal inventory and admission policies for a “Clicks‐and‐Bricks” retailer of seasonal products that, in addition to selling through its own physical and online stores, also sells through third‐party websites by means of affiliate programs. Through postings on partners' webpages, an affiliate program allows a retailer to attract customers who would otherwise be missed. However, this retailer needs to pay a commission for each sale that originates from the website operators participating in the program. The retailer may also refer online orders to other sources (such as distributors and manufacturers) for fulfillment through a drop‐shipping agreement and thus earns commissions. This would be an option when, for example, the inventories at the physical stores were running low. Therefore, during the selling horizon, the retailer needs to dynamically control the opening/closing of affiliate programs and decide on the fulfillment option for online orders. On the basis of a discrete‐time dynamic programming model, the optimal admission policy of the retailer is investigated in this paper, and the structural properties of the revenue function are characterized. Numerical examples are given to show the revenue impact of optimal admission control. The optimal initial stocking decisions at the physical stores are also studied. © 2009 Wiley Periodicals, Inc. Naval Research Logistics 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号