首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This article studies the classical single‐item economic lot‐sizing problem with constant capacities, fixed‐plus‐linear order costs, and concave inventory costs, where backlogging is allowed. We propose an O(T3) optimal algorithm for the problem, which improves upon the O(T4) running time of the famous algorithm developed by Florian and Klein (Manage Sci18 (1971) 12–20). Instead of using the standard dynamic programming approach by predetermining the minimal cost for every possible subplan, we develop a backward dynamic programming algorithm to obtain a more efficient implementation. © 2012 Wiley Periodicals, Inc. Naval Research Logistics, 2012  相似文献   

2.
We study an assembly system with a single finished product managed using an echelon base‐stock or order‐up‐to policy. Some or all operations have capacity constraints. Excess demand is either backordered in every period or lost in every period. We show that the shortage penalty cost over any horizon is jointly convex with respect to the base‐stock levels and capacity levels. When the holding costs are also included in the objective function, we show that the cost function can be written as a sum of a convex function and a concave function. Throughout the article, we discuss algorithmic implications of our results for making optimal inventory and capacity decisions in such systems.© 2009 Wiley Periodicals, Inc. Naval Research Logistics, 2010  相似文献   

3.
We consider the Inventory‐Routing Problem (IRP) where n geographically dispersed retailers must be supplied by a central facility. The retailers experience demand for the product at a deterministic rate, and incur holding costs for keeping inventory. Distribution is performed by a fleet of capacitated vehicles. The objective is to minimize the average transportation and inventory costs per unit time over the infinite horizon. We focus on the set of Fixed Partition Policies (FPP). In an FPP, the retailers are partitioned into disjoint and collectively exhaustive sets. Each set of retailers is served independently of the others and at its optimal replenishment rate. Previous research has measured the effectiveness of an FPP solution relative to a lower bound over all policies. We propose an additional measure that is relative to the optimal FPP. In this paper we construct a polynomial‐time partitioning scheme that is shown to yield an FPP whose cost is asymptotically within 1.5% + ? of the cost of an optimal FPP, for arbitrary ? > 0. In addition, in some cases, our polynomial‐time scheme yields an FPP whose cost is asymptotically within 1.5% + ? of the minimal policy's cost (over all feasible policies). © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004  相似文献   

4.
We deal with the problem of minimizing makespan on a single batch processing machine. In this problem, each job has both processing time and size (capacity requirement). The batch processing machine can process a number of jobs simultaneously as long as the total size of these jobs being processed does not exceed the machine capacity. The processing time of a batch is just the processing time of the longest job in the batch. An approximation algorithm with worst‐case ratio 3/2 is given for the version where the processing times of large jobs (with sizes greater than 1/2) are not less than those of small jobs (with sizes not greater than 1/2). This result is the best possible unless P = NP. For the general case, we propose an approximation algorithm with worst‐case ratio 7/4. A number of heuristics by Uzosy are also analyzed and compared. © 2001 John Wiley & Sons, Inc. Naval Research Logistics 48: 226–240, 2001  相似文献   

5.
We study a single batching machine scheduling problem with transportation and deterioration considerations arising from steel production. A set of jobs are transported, one at a time, by a vehicle from a holding area to the single batching machine. The machine can process several jobs simultaneously as a batch. The processing time of a job will increase if the duration from the time leaving the holding area to the start of its processing exceeds a given threshold. The time needed to process a batch is the longest of the job processing times in the batch. The problem is to determine the job sequence for transportation and the job batching for processing so as to minimize the makespan and the number of batches. We study four variations (P1, P2, P3, P4) of the problem with different treatments of the two criteria. We prove that all the four variations are strongly NP‐hard and further develop polynomial time algorithms for their special cases. For each of the first three variations, we propose a heuristic algorithm and analyze its worst‐case performance. For P4, which is to find the Pareto frontier, we provide a heuristic algorithm and an exact algorithm based on branch and bound. Computational experiments show that all the heuristic algorithms perform well on randomly generated problem instances, and the exact algorithm for P4 can obtain Pareto optimal schedules for small‐scale instances. © 2014 Wiley Periodicals, Inc. Naval Research Logistics 61: 269–285, 2014  相似文献   

6.
Consider a single‐item, periodic review, infinite‐horizon, undiscounted, inventory model with stochastic demands, proportional holding and shortage costs, and full backlogging. Orders can arrive in every period, and the cost of receiving them is negligible (as in a JIT setting). Every T periods, one audits the current stock level and decides on deliveries for the next T periods, thus incurring a fixed audit cost and—when one schedules deliveries—a fixed order cost. The problem is to find a review period T and an ordering policy that satisfy the average cost criterion. The current article extends an earlier treatment of this problem, which assumed that the fixed order cost is automatically incurred once every T periods. We characterize an optimal ordering policy when T is fixed, prove that an optimal review period T** exists, and develop a global search algorithm for its computation. We also study the behavior of four approximations to T** based on the assumption that the fixed order cost is incurred during every cycle. Analytic results from a companion article (where μ/σ is large) and extensive computational experiments with normal and gamma demand test problems suggest these approximations and associated heuristic policies perform well when μ/σ ≥ 2. © 2000 John Wiley & Sons, Inc. Naval Research Logistics 47: 329–352, 2000  相似文献   

7.
Motivated by the flow of products in the iron and steel industry, we study an identical and parallel machine scheduling problem with batch deliveries, where jobs finished on the parallel machines are delivered to customers in batches. Each delivery batch has a capacity and incurs a cost. The objective is to find a coordinated production and delivery schedule that minimizes the total flow time of jobs plus the total delivery cost. This problem is an extension of the problem considered by Hall and Potts, Ann Oper Res 135 (2005) 41–64, who studied a two‐machine problem with an unbounded number of transporters and unbounded delivery capacity. We first provide a dynamic programming algorithm to solve a special case with a given job assignment to the machines. A heuristic algorithm is then presented for the general problem, and its worst‐case performance ratio is analyzed. The computational results show that the heuristic algorithm can generate near‐optimal solutions. Finally, we offer a fully polynomial‐time approximation scheme for a fixed number of machines. © 2016 Wiley Periodicals, Inc. Naval Research Logistics 63: 492–502, 2016  相似文献   

8.
We focus on the concave‐cost version of a production planning problem where a manufacturer can meet demand by either producing new items or by remanufacturing used items. Unprocessed used items are disposed. We show the NP‐hardness of the problem even when all the costs are stationary. Utilizing the special structure of the extreme‐point optimal solutions for the minimum concave‐cost problem with a network flow type feasible region, we develop a polynomial‐time heuristic for the problem. Our computational study indicates that the heuristic is a very efficient way to solve the problem as far as solution speed and quality are concerned. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005  相似文献   

9.
In this paper we consider the capacitated multi‐facility Weber problem with the Euclidean, squared Euclidean, and ?p‐distances. This problem is concerned with locating m capacitated facilities in the Euclidean plane to satisfy the demand of n customers with the minimum total transportation cost. The demand and location of each customer are known a priori and the transportation cost between customers and facilities is proportional to the distance between them. We first present a mixed integer linear programming approximation of the problem. We then propose new heuristic solution methods based on this approximation. Computational results on benchmark instances indicate that the new methods are both accurate and efficient. © 2006 Wiley Periodicals, Inc. Naval Research Logistics 2006  相似文献   

10.
This paper describes a deterministic capacity-expansion model for two facility types with a finite number of discrete time periods. Capacity expansions are initialed either by new construction or by the conversion of idle capacity from one facility type to the other. Once converted, the capacity becomes an integral part of the new facility type. The costs incurred include construction, conversion, and holding costs. All cost functions are assumed to be nondecreasing and concave. Using a network flow approach, the paper develops an efficient dynamic-programming algorithm to minimize the total costs when the demands for additional capacity are nonnegative in each period. Thereafter, the algorithm is extended for arbitrary demands. The model is applied to a cable-sizing problem that occurs in communication networks, and numerical examples are discussed.  相似文献   

11.
A capacity expansion model with multiple facility types is examined, where different facility types represent different quality levels. Applications for the model can be found in communications networks and production facilities. The model assumes a finite number of discrete time periods. The facilities are expanded over time. Capacity of a high-quality facility can be converted to satisfy demand for a lower-quality facility. The costs considered include capacity expansion costs and excess capacity holding costs. All cost functions are nondecreasing and concave. An algorithm that finds optimal expansion policies requires extensive computations and is practical only for small scale problems. Here, we develop a heuristic that employs so-called distributed expansion policies. It also attempts to decompose the problem into several smaller problems solved independently. The heuristic is computationally efficient. Further, it has consistently found near-optimal solutions.  相似文献   

12.
We consider a pricing problem in directed, uncapacitated networks. Tariffs must be defined by an operator, the leader, for a subset of m arcs, the tariff arcs. Costs of all other arcs in the network are assumed to be given. There are n clients, the followers, and after the tariffs have been determined, the clients route their demands independent of each other on paths with minimal total cost. The problem is to find tariffs that maximize the operator's revenue. Motivated by applications in telecommunication networks, we consider a restricted version of this problem, assuming that each client utilizes at most one of the operator's tariff arcs. The problem is equivalent to pricing bridges that clients can use in order to cross a river. We prove that this problem is APX‐hard. Moreover, we analyze the effect of uniform pricing, proving that it yields both an m approximation and a (1 + lnD)‐approximation. Here, D is upper bounded by the total demand of all clients. In addition, we consider the problem under the additional restriction that the operator must not reject any of the clients. We prove that this problem does not admit approximation algorithms with any reasonable performance guarantee, unless P = NP, and we prove the existence of an n‐approximation algorithm. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   

13.
We consider the optimal control of a production inventory‐system with a single product and two customer classes where items are produced one unit at a time. Upon arrival, customer orders can be fulfilled from existing inventory, if there is any, backordered, or rejected. The two classes are differentiated by their backorder and lost sales costs. At each decision epoch, we must determine whether or not to produce an item and if so, whether to use this item to increase inventory or to reduce backlog. At each decision epoch, we must also determine whether or not to satisfy demand from a particular class (should one arise), backorder it, or reject it. In doing so, we must balance inventory holding costs against the costs of backordering and lost sales. We formulate the problem as a Markov decision process and use it to characterize the structure of the optimal policy. We show that the optimal policy can be described by three state‐dependent thresholds: a production base‐stock level and two order‐admission levels, one for each class. The production base‐stock level determines when production takes place and how to allocate items that are produced. This base‐stock level also determines when orders from the class with the lower shortage costs (Class 2) are backordered and not fulfilled from inventory. The order‐admission levels determine when orders should be rejected. We show that the threshold levels are monotonic (either nonincreasing or nondecreasing) in the backorder level of Class 2. We also characterize analytically the sensitivity of these thresholds to the various cost parameters. Using numerical results, we compare the performance of the optimal policy against several heuristics and show that those that do not allow for the possibility of both backordering and rejecting orders can perform poorly.© 2010 Wiley Periodicals, Inc. Naval Research Logistics 2010  相似文献   

14.
We consider a firm which faces a Poisson customer demand and uses a base‐stock policy to replenish its inventories from an outside supplier with a fixed lead time. The firm can use a preorder strategy which allows the customers to place their orders before their actual need. The time from a customer's order until the date a product is actually needed is called commitment lead time. The firm pays a commitment cost which is strictly increasing and convex in the length of the commitment lead time. For such a system, we prove the optimality of bang‐bang and all‐or‐nothing policies for the commitment lead time and the base‐stock policy, respectively. We study the case where the commitment cost is linear in the length of the commitment lead time in detail. We show that there exists a unit commitment cost threshold which dictates the optimality of either a buy‐to‐order (BTO) or a buy‐to‐stock strategy. The unit commitment cost threshold is increasing in the unit holding and backordering costs and decreasing in the mean lead time demand. We determine the conditions on the unit commitment cost for profitability of the BTO strategy and study the case with a compound Poisson customer demand.  相似文献   

15.
We consider a supply chain in which a retailer faces a stochastic demand, incurs backorder and inventory holding costs and uses a periodic review system to place orders from a manufacturer. The manufacturer must fill the entire order. The manufacturer incurs costs of overtime and undertime if the order deviates from the planned production capacity. We determine the optimal capacity for the manufacturer in case there is no coordination with the retailer as well as in case there is full coordination with the retailer. When there is no coordination the optimal capacity for the manufacturer is found by solving a newsvendor problem. When there is coordination, we present a dynamic programming formulation and establish that the optimal ordering policy for the retailer is characterized by two parameters. The optimal coordinated capacity for the manufacturer can then be obtained by solving a nonlinear programming problem. We present an efficient exact algorithm and a heuristic algorithm for computing the manufacturer's capacity. We discuss the impact of coordination on the supply chain cost as well as on the manufacturer's capacity. We also identify the situations in which coordination is most beneficial. © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   

16.
In many practical situations of production scheduling, it is either necessary or recommended to group a large number of jobs into a relatively small number of batches. A decision needs to be made regarding both the batching (i.e., determining the number and the size of the batches) and the sequencing (of batches and of jobs within batches). A setup cost is incurred whenever a batch begins processing on a given machine. This paper focuses on batch scheduling of identical processing‐time jobs, and machine‐ and sequence‐independent setup times on an m‐machine flow‐shop. The objective is to find an allocation to batches and their schedule in order to minimize flow‐time. We introduce a surprising and nonintuitive solution for the problem. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004  相似文献   

17.
We consider the salvo policy problem, in which there are k moments, called salvos, at which we can fire multiple missiles simultaneously at an incoming object. Each salvo is characterized by a probability pi: the hit probability of a single missile. After each salvo, we can assess whether the incoming object is still active. If it is, we fire the missiles assigned to the next salvo. In the salvo policy problem, the goal is to assign at most n missiles to salvos in order to minimize the expected number of missiles used. We consider three problem versions. In Gould's version, we have to assign all n missiles to salvos. In the Big Bomb version, a cost of B is incurred when all salvo's are unsuccessful. Finally, we consider the Quota version in which the kill probability should exceed some quota Q. We discuss the computational complexity and the approximability of these problem versions. In particular, we show that Gould's version and the Big Bomb version admit pseudopolynomial time exact algorithms and fully polynomial time approximation schemes. We also present an iterative approximation algorithm for the Quota version, and show that a related problem is NP-complete.  相似文献   

18.
This article addresses the inventory placement problem in a serial supply chain facing a stochastic demand for a single planning period. All customer demand is served from stage 1, where the product is stored in its final form. If the demand exceeds the supply at stage 1, then stage 1 is resupplied from stocks held at the upstream stages 2 through N, where the product may be stored in finished form or as raw materials or subassemblies. All stocking decisions are made before the demand occurs. The demand is nonnegative and continuous with a known probability distribution, and the purchasing, holding, shipping, processing, and shortage costs are proportional. There are no fixed costs. All unsatisfied demand is lost. The objective is to select the stock quantities that should be placed different stages so as to maximize the expected profit. Under reasonable cost assumptions, this leads to a convex constrained optimization problem. We characterize the properties of the optimal solution and propose an effective algorithm for its computation. For the case of normal demands, the calculations can be done on a spreadsheet. © 2001 John Wiley & Sons, Inc. Naval Research Logistics 48:506–517, 2001  相似文献   

19.
In this article, we consider the concurrent open shop scheduling problem to minimize the total weighted completion time. When the number of machines is arbitrary, the problem has been shown to be inapproximable within a factor of 4/3 ‐ ε for any ε > 0 if the unique games conjecture is true in the literature. We propose a polynomial time approximation scheme for the problem under the restriction that the number of machines is fixed. © 2011 Wiley Periodicals, Inc. Naval Research Logistics, 2011  相似文献   

20.
We consider design of control charts in the presence of machine stoppages that are exogenously imposed (as under jidoka practices). Each stoppage creates an opportunity for inspection/repair at reduced cost. We first model a single machine facing opportunities arriving according to a Poisson process, develop the expressions for its operating characteristics and construct the optimization problem for economic design of a control chart. We, then, consider the multiple machine setting where individual machine stoppages may create inspection/repair opportunities for other machines. We develop exact expressions for the cases when all machines are either opportunity‐takers or not. On the basis of an approximation for the all‐taker case, we then propose an approximate model for the mixed case. In a numerical study, we examine the opportunity taking behavior of machines in both single and multiple machine settings and the impact of such practices on the design of an X – Q C chart. Our findings indicate that incorporating inspection/repair opportunities into QC chart design may provide considerable cost savings. © 2009 Wiley Periodicals, Inc. Naval Research Logistics 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号