首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We consider a distribution system consisting of a central warehouse and a group of retailers facing independent stochastic demand. The retailers replenish from the warehouse, and the warehouse from an outside supplier with ample supply. Time is continuous. Most previous studies on inventory control policies for this system have considered stock‐based batch‐ordering policies. We develop a time‐based joint‐replenishment policy in this study. Let the warehouse set up a basic replenishment interval. The retailers are replenished through the warehouse in intervals that are integer multiples of the basic replenishment interval. No inventory is carried at the warehouse. We provide an exact evaluation of the long‐term average system costs under the assumption that stock can be balanced among the retailers. The structural properties of the inventory system are characterized. We show that, although it is well known that stock‐based inventory control policies dominate time‐based inventory control policies at a single facility, this dominance does not hold for distribution systems with multiple retailers and stochastic demand. This is because the latter can provide a more efficient mechanism to streamline inventory flow and pool retailer demand, even though the former may be able to use more updated stock information to optimize system performance. The findings of the study provide insights about the key factors that drive the performance of a multiechelon inventory control system. © 2013 Wiley Periodicals, Inc. Naval Research Logistics 60: 637–651, 2013  相似文献   

2.
We consider a multi‐stage inventory system composed of a single warehouse that receives a single product from a single supplier and replenishes the inventory of n retailers through direct shipments. Fixed costs are incurred for each truck dispatched and all trucks have the same capacity limit. Costs are stationary, or more generally monotone as in Lippman (Management Sci 16, 1969, 118–138). Demands for the n retailers over a planning horizon of T periods are given. The objective is to find the shipment quantities over the planning horizon to satisfy all demands at minimum system‐wide inventory and transportation costs without backlogging. Using the structural properties of optimal solutions, we develop (1) an O(T2) algorithm for the single‐stage dynamic lot sizing problem; (2) an O(T3) algorithm for the case of a single‐warehouse single‐retailer system; and (3) a nested shortest‐path algorithm for the single‐warehouse multi‐retailer problem that runs in polynomial time for a given number of retailers. To overcome the computational burden when the number of retailers is large, we propose aggregated and disaggregated Lagrangian decomposition methods that make use of the structural properties and the efficient single‐stage algorithm. Computational experiments show the effectiveness of these algorithms and the gains associated with coordinated versus decentralized systems. Finally, we show that the decentralized solution is asymptotically optimal. © 2009 Wiley Periodicals, Inc. Naval Research Logistics 2009  相似文献   

3.
This paper presents a one-period two-echelon inventory model with one warehouse in the first echelon and n warehouses in the second echelon. At the beginning of the period the stock levels at all facilities are adjusted by purchasing or disposing of items at the first echelon, returning or shipping items between the echelons and transshipping items within the second echelon. During the period, demands (which may be negative) are placed on all warehouses in the second echelon and an attempt is made to satisfy shortages either by an expedited shipment from the first echelon to the second echelon or an expedited transshipment within the second echelon. The decision problem is to choose an initial stock level at the first echelon (by a purchase or a disposition) and an initial allocation so as to minimize the initial stock movement costs during the period plus inventory carrying costs and system shortage costs at the end of the period. It is shown that the objective function takes on one of four forms, depending on the relative magnitudes of the various shipping costs. All four forms of the objective function are derived and proven to be convex. Several applications of this general model are considered. We also consider multi-period extensions of the general model and an important special case is solved explicitly.  相似文献   

4.
This article analyses a divergent supply chain consisting of a central warehouse and N nonidentical retailers. The focus is on joint evaluation of inventory replenishment and shipment consolidation effects. A time‐based dispatching and shipment consolidation policy is used at the warehouse in conjunction with real‐time point‐of‐sale data and centralized inventory information. This represents a common situation, for example, in various types of vendor managed inventory systems. The main contribution is the derivation of an exact recursive procedure for determining the expected inventory holding and backorder costs for the system, under the assumption of Poisson demand. Two heuristics for determining near optimal shipment intervals are also presented. The results are applicable both for single‐item and multiitem systems. © 2011 Wiley Periodicals, Inc. Naval Research Logistics 58: 59–71, 2011  相似文献   

5.
We consider a two‐level system in which a warehouse manages the inventories of multiple retailers. Each retailer employs an order‐up‐to level inventory policy over T periods and faces an external demand which is dynamic and known. A retailer's inventory should be raised to its maximum limit when replenished. The problem is to jointly decide on replenishment times and quantities of warehouse and retailers so as to minimize the total costs in the system. Unlike the case in the single level lot‐sizing problem, we cannot assume that the initial inventory will be zero without loss of generality. We propose a strong mixed integer program formulation for the problem with zero and nonzero initial inventories at the warehouse. The strong formulation for the zero initial inventory case has only T binary variables and represents the convex hull of the feasible region of the problem when there is only one retailer. Computational results with a state‐of‐the art solver reveal that our formulations are very effective in solving large‐size instances to optimality. © 2010 Wiley Periodicals, Inc. Naval Research Logistics, 2010  相似文献   

6.
An inventory system that consists of a depot (central warehouse) and retailers (regional warehouses) is considered. The system is replenished regularly on a fixed cycle by an outside supplier. Most of the stock is direct shipped to the retailer locations but some stock is sent to the central warehouse. At the beginning of any one of the periods during the cycle, the central stock can then be completely allocated out to the retailers. In this paper we propose a heuristic method to dynamically (as retailer inventory levels change with time) determine the appropriate period in which to do the allocation. As the optimal method is not tractable, the heuristic's performance is compared against two other approaches. One presets the allocation period, while the other provides a lower bound on the expected shortages of the optimal solution, obtained by assuming that we know ahead of time all of the demands, period by period, in the cycle. The results from extensive simulation experiments show that the dynamic heuristic significantly outperforms the “preset” approach and its performance is reasonably close to the lower bound. Moreover, the logic of the heuristic is appealing and the calculations, associated with using it, are easy to carry out. Sensitivities to various system parameters (such as the safety factor, coefficient of variation of demand, number of regional warehouses, external lead time, and the cycle length) are presented. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005.  相似文献   

7.
This study addresses the design of a three‐stage production/distribution system where the first stage includes the set of established retailers and the second and third stages include the sets of potential distribution centers (DCs) and potential capacitated suppliers, respectively. In this problem, in addition to the fixed location/operating costs associated with locating DCs and suppliers, we consider the coordinated inventory replenishment decisions at the located DCs and retailers along with the appropriate inventory costs explicitly. In particular, we account for the replenishment and holding costs at the retailers and selected DCs, and the fixed plus distance‐based transportation costs between the selected plants and their assigned DCs, and between the selected DCs and their respective retailers, explicitly. The resulting formulation is a challenging mixed‐integer nonlinear programming model for which we propose efficient heuristic solution approaches. Our computational results demonstrate the performance of the heuristic approaches as well as the value of integrated decision‐making by verifying that significant cost savings are realizable when the inventory decisions and costs are incorporated in the production distribution system design. © 2012 Wiley Periodicals, Inc. Naval Research Logistics 59: 172–195, 2012  相似文献   

8.
In this paper, we present an optimization model for coordinating inventory and transportation decisions at an outbound distribution warehouse that serves a group of customers located in a given market area. For the practical problems which motivated this paper, the warehouse is operated by a third party logistics provider. However, the models developed here may be applicable in a more general context where outbound distribution is managed by another supply chain member, e.g., a manufacturer. We consider the case where the aggregate demand of the market area is constant and known per period (e.g., per day). Under an immediate delivery policy, an outbound shipment is released each time a demand is realized (e.g., on a daily basis). On the other hand, if these shipments are consolidated over time, then larger (hence more economical) outbound freight quantities can be dispatched. In this case, the physical inventory requirements at the third party warehouse (TPW) are determined by the consolidated freight quantities. Thus, stock replenishment and outbound shipment release policies should be coordinated. By optimizing inventory and freight consolidation decisions simultaneously, we compute the parameters of an integrated inventory/outbound transportation policy. These parameters determine: (i) how often to dispatch a truck so that transportation scale economies are realized and timely delivery requirements are met, and (ii) how often, and in what quantities, the stock should be replenished at the TPW. We prove that the optimal shipment release timing policy is nonstationary, and we present algorithms for computing the policy parameters for both the uncapacitated and finite cargo capacity problems. The model presented in this study is considerably different from the existing inventory/transportation models in the literature. The classical inventory literature assumes that demands should be satisfied as they arrive so that outbound shipment costs are sunk costs, or else these costs are covered by the customer. Hence, the classical literature does not model outbound transportation costs. However, if a freight consolidation policy is in place then the outbound transportation costs can no longer be ignored in optimization. Relying on this observation, this paper models outbound transportation costs, freight consolidation decisions, and cargo capacity constraints explicitly. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 531–556, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/nav.10030  相似文献   

9.
We study the problem of designing a two‐echelon spare parts inventory system consisting of a central plant and a number of service centers each serving a set of customers with stochastic demand. Processing and storage capacities at both levels of facilities are limited. The manufacturing process is modeled as a queuing system at the plant. The goal is to optimize the base‐stock levels at both echelons, the location of service centers, and the allocation of customers to centers simultaneously, subject to service constraints. A mixed integer nonlinear programming model (MINLP) is formulated to minimize the total expected cost of the system. The problem is NP‐hard and a Lagrangian heuristic is proposed. We present computational results and discuss the trade‐off between cost and service. © 2009 Wiley Periodicals, Inc. Naval Research Logistics 2009  相似文献   

10.
We propose a new method for making the inventory replenishment decisions in distribution systems. In particular, we consider distribution systems consisting of multiple retailers that face random demand and a warehouse that supplies the retailers. The method that we propose is based on formulating the distribution problem as a dynamic program, and relaxing the constraints that ensure the nonnegativity of the shipments to the retailers, by associating Lagrange multipliers with them. We show that our method provides lower bounds on the value functions, and a good set of values for the Lagrange multipliers can be obtained by maximizing a concave function in a relatively straightforward manner. Computational experiments indicate that our method can provide significant improvements over the traditional approaches for making the inventory replenishment decisions, in terms of both the tightness of the lower bounds on the value functions and the performance of the policies. © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   

11.
This paper introduces a new replenishment policy for inventory control in a two‐level distribution system consisting of one central warehouse and an arbitrary number of nonidentical retailers. The new policy is designed to control the replenishment process at the central warehouse, using centralized information regarding the inventory positions and demand processes of all installations in the system. The retailers on the other hand are assumed to use continuous review (R, Q) policies. A technique for exact evaluation of the expected inventory holding and backorder costs for the system is presented. Numerical results indicate that there are cases when considerable savings can be made by using the new (α0, Q0) policy instead of a traditional echelon‐ or installation‐stock (R, Q) policy. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 798–822, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/nav.10040  相似文献   

12.
A two‐echelon distribution inventory system with a central warehouse and a number of retailers is considered. The retailers face stochastic demand and replenish from the warehouse, which, in turn, replenishes from an outside supplier. The system is reviewed continuously and demands that cannot be met directly are backordered. Standard holding and backorder costs are considered. In the literature on multi‐echelon inventory control it is standard to assume that backorders at the warehouse are served according to a first come–first served policy (FCFS). This allocation rule simplifies the analysis but is normally not optimal. It is shown that the FCFS rule can, in the worst case, lead to an asymptotically unbounded relative cost increase as the number of retailers approaches infinity. We also provide a new heuristic that will always give a reduction of the expected costs. A numerical study indicates that the average cost reduction when using the heuristic is about two percent. The suggested heuristic is also compared with two existing heuristics. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   

13.
就一个仓库、多个零售商,对联合订货费用函数的模型进行分析,给出了一个求解最佳订货周期的多项式时间的算法,且算法的时间复杂性为O(nlogn)。利用文献[8]中的技巧,给出了该库存博弈的核。  相似文献   

14.
在分析应急物流研究成果基础上,探索应用虚拟仓库理论和仿真技术研究应急物流中的协同库存问题.为此,构建了军事虚拟仓库系统及其协同控制系统动力学仿真模型,并针对军民、军军仓库间的应急物流协同保障策略进行仿真分析,结果表明这种方法可以在应急状态下合理调度和管理各类仓库资源,改进应急物流条件下仓库保障能力.  相似文献   

15.
We consider a two‐echelon inventory system with a manufacturer operating from a warehouse supplying multiple distribution centers (DCs) that satisfy the demand originating from multiple sources. The manufacturer has a finite production capacity and production times are stochastic. Demand from each source follows an independent Poisson process. We assume that the transportation times between the warehouse and DCs may be positive which may require keeping inventory at both the warehouse and DCs. Inventory in both echelons is managed using the base‐stock policy. Each demand source can procure the product from one or more DCs, each incurring a different fulfilment cost. The objective is to determine the optimal base‐stock levels at the warehouse and DCs as well as the assignment of the demand sources to the DCs so that the sum of inventory holding, backlog, and transportation costs is minimized. We obtain a simple equation for finding the optimal base‐stock level at each DC and an upper bound for the optimal base‐stock level at the warehouse. We demonstrate several managerial insights including that the demand from each source is optimally fulfilled entirely from a single distribution center, and as the system's utilization approaches 1, the optimal base‐stock level increases in the transportation time at a rate equal to the demand rate arriving at the DC. © 2011 Wiley Periodicals, Inc. Naval Research Logistics, 2011  相似文献   

16.
The optimization problem as formulated in the METRIC model takes the form of minimizing the expected number of total system backorders in a two-echelon inventory system subject to a budget constraint. The system contains recoverable items – items subject to repair when they fail. To solve this problem, one needs to find the optimal Lagrangian multiplier associated with the given budget constraint. For any large-scale inventory system, this task is computationally not trivial. Fox and Landi proposed one method that was a significant improvement over the original METRIC algorithm. In this report we first develop a method for estimating the value of the optimal Lagrangian multiplier used in the Fox-Landi algorithm, present alternative ways for determining stock levels, and compare these proposed approaches with the Fox-Landi algorithm, using two hypothetical inventory systems – one having 3 bases and 75 items, the other 5 bases and 125 items. The comparison shows that the computational time can be reduced by nearly 50 percent. Another factor that contributes to the higher requirement for computational time in obtaining the solution to two-echelon inventory systems is that it has to allocate stock optimally to the depot as well as to bases for a given total-system stock level. This essentially requires the evaluation of every possible combination of depot and base stock levels – a time-consuming process for many practical inventory problems with a sizable system stock level. This report also suggests a simple approximation method for estimating the optimal depot stock level. When this method was applied to the same two hypotetical inventory systems indicated above, it was found that the estimate of optimal depot stock is quite close to the optimal value in all cases. Furthermore, the increase in expected system backorders using the estimated depot stock levels rather than the optimal levels is generally small.  相似文献   

17.
We consider the problem of scheduling customer orders in a flow shop with the objective of minimizing the sum of tardiness, earliness (finished goods inventory holding), and intermediate (work‐in‐process) inventory holding costs. We formulate this problem as an integer program, and based on approximate solutions to two different, but closely related, Dantzig‐Wolfe reformulations, we develop heuristics to minimize the total cost. We exploit the duality between Dantzig‐Wolfe reformulation and Lagrangian relaxation to enhance our heuristics. This combined approach enables us to develop two different lower bounds on the optimal integer solution, together with intuitive approaches for obtaining near‐optimal feasible integer solutions. To the best of our knowledge, this is the first paper that applies column generation to a scheduling problem with different types of strongly ????‐hard pricing problems which are solved heuristically. The computational study demonstrates that our algorithms have a significant speed advantage over alternate methods, yield good lower bounds, and generate near‐optimal feasible integer solutions for problem instances with many machines and a realistically large number of jobs. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004.  相似文献   

18.
This paper introduces an efficient heuristic procedure for a special class of mixed integer programming problems called the uncapacitated warehouse (plant) location problem. This procedure is derived from the branching decision rules proposed for the branch and bound algorithm by the author in an earlier paper. It can be viewed as tracing a single path of the branch and bound tree (from the initial node to the terminal node), the path being determined by the particular branching decision rule used. Unlike branch and bound the computational efficiency of this procedure is substantially less than linearly related to the number of potential warehouse locations (integer variables) in the problem. Its computational efficiency is tested on problems found in the literature.  相似文献   

19.
This paper considers a warehouse sizing problem whose objective is to minimize the total cost of ordering, holding, and warehousing of inventory. Unlike typical economic lot sizing models, the warehousing cost structure examined here is not the simple unit rate type, but rather a more realistic step function of the warehouse space to be acquired. In the cases when only one type of stock‐keeping unit (SKU) is warehoused, or when multiple SKUs are warehoused, but, with separable inventory costs, closed form solutions are obtained for the optimal warehouse size. For the case of multi‐SKUs with joint inventory replenishment cost, a heuristic with a provable performance bound of 94% is provided. © 2001 John Wiley & Sons, Inc. Naval Research Logistics 48: 299–312, 2001  相似文献   

20.
This article considers the order batching problem in steelmaking and continuous‐casting production. The problem is to jointly specify the slabs needed to satisfy each customer order and group all the slabs of different customer orders into production batches. A novel mixed integer programming model is formulated for the problem. Through relaxing the order assignment constraints, a Lagrangian relaxation model is then obtained. By exploiting the relationship between Lagrangian relaxation and column generation, we develop a combined algorithm that contains nested double loops. At the inner loop, the subgradient method is applied for approximating the Lagrangian dual problem and pricing out columns of the master problem corresponding to the linear dual form of the Lagrangian dual problem. At the outer loop, column generation is employed to solve the master problem exactly and adjust Lagrangian multipliers. Computational experiments are carried out using real data collected from a large steel company, as well as on large‐scaled problem instances randomly generated. The results demonstrate that the combined algorithm can obtain tighter lower bound and higher quality solution within an acceptable computation time as compared to the conventional Lagrangian relaxation algorithm. © 2011 Wiley Periodicals, Inc. Naval Research Logistics, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号