首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
In this paper we consider n jobs and a number of machines in parallel. The machines are identical and subject to breakdown and repair. The number may therefore vary over time and is at time t equal to m(t). Preemptions are allowed. We consider three objectives, namely, the total completion time, ∑ Cj, the makespan Cmax, and the maximum lateness Lmax. We study the conditions on m(t) under which various rules minimize the objective functions under consideration. We analyze cases when the jobs have deadlines to meet and when the jobs are subject to precedence constraints. © 2003 Wiley Periodicals, Inc. Naval Research Logistics, 2004.  相似文献   

2.
In a recent paper, Hamilton Emmons has established theorems relating to the order in which pairs of jobs are to be processed in an optimal schedule to minimize the total tardiness of performing n jobs on one machine. Using these theorems, the algorithm of this paper determines the precedence relationships among pairs of jobs (whenever possible) and eliminates the first and the last few jobs in an optimal sequence. The remaining jobs are then ordered by incorporating the precedence relationships in a dynamic programming framework. Propositions are proved which considerably reduce the total computation involved in the dynamic programming phase. Computational results indicate that the solution time goes up less than linearly with the size (n) of the problem. The median solution time for solving 50 job problems was 0.36 second on UNIVAC 1108 computer.  相似文献   

3.
This paper examines scheduling problems in which the setup phase of each operation needs to be attended by a single server, common for all jobs and different from the processing machines. The objective in each situation is to minimize the makespan. For the processing system consisting of two parallel dedicated machines we prove that the problem of finding an optimal schedule is N P‐hard in the strong sense even if all setup times are equal or if all processing times are equal. For the case of m parallel dedicated machines, a simple greedy algorithm is shown to create a schedule with the makespan that is at most twice the optimum value. For the two machine case, an improved heuristic guarantees a tight worst‐case ratio of 3/2. We also describe several polynomially solvable cases of the later problem. The two‐machine flow shop and the open shop problems with a single server are also shown to be N P‐hard in the strong sense. However, we reduce the two‐machine flow shop no‐wait problem with a single server to the Gilmore—Gomory traveling salesman problem and solve it in polynomial time. © 2000 John Wiley & Sons, Inc. Naval Research Logistics 47: 304–328, 2000  相似文献   

4.
We consider the problem of scheduling N jobs on M parallel machines so as to minimize the maximum earliness or tardiness cost incurred for each of the jobs. Earliness and tardiness costs are given by general (but job-independent) functions of the amount of time a job is completed prior to or after a common due date. We show that in problems with a nonrestrictive due date, the problem decomposes into two parts. Each of the M longest jobs is assigned to a different machine, and all other jobs are assigned to the machines so as to minimize their makespan. With these assignments, the individual scheduling problems for each of the machines are simple to solve. We demonstrate that several simple heuristics of low complexity, based on this characterization, are asymptotically optimal under mild probabilistic conditions. We develop attractive worst-case bounds for them. We also develop a simple closed-form lower bound for the minimum cost value. The bound is asymptotically accurate under the same probabilistic conditions. In the case where the due date is restrictive, the problem is more complex only in the sense that the set of initial jobs on the machines is not easily characterized. However, we extend our heuristics and lower bounds to this general case as well. Numerical studies exhibit that these heuristics perform excellently even for small- or moderate-size problems both in the restrictive and nonrestrictive due-date case. © 1997 John Wiley & Sons, Inc.  相似文献   

5.
In this paper we consider the problem of scheduling a set of jobs on a single machine on which a rate‐modifying activity may be performed. The rate‐modifying activity is an activity that changes the production rate of the machine. So the processing time of a job is a variable, which depends on whether it is scheduled before or after the rate‐modifying activity. We assume that the rate‐modifying activity can take place only at certain predetermined time points, which is a constrained case of a similar problem discussed in the literature. The decisions under consideration are whether and when to schedule the rate‐modifying activity, and how to sequence the jobs in order to minimize some objectives. We study the problems of minimizing makespan and total completion time. We first analyze the computational complexity of both problems for most of the possible versions. The analysis shows that the problems are NP‐hard even for some special cases. Furthermore, for the NP‐hard cases of the makespan problem, we present a pseudo‐polynomial time optimal algorithm and a fully polynomial time approximation scheme. For the total completion time problem, we provide a pseudo‐polynomial time optimal algorithm for the case with agreeable modifying rates. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005  相似文献   

6.
We state a balancing problem for mixed model assembly lines with a paced moving conveyor as: Given the daily assembling sequence of the models, the tasks of each model, the precedence relations among the tasks, and the operations parameters of the assembly line, assign the tasks of the models to the workstations so as to minimize the total overload time. Several characteristics of the problem are investigated. A line‐balancing heuristic is proposed based on a lower bound of the total overload time. A practical procedure is provided for estimating the deviation of any given line‐balance solution from the theoretical optimum. Numerical examples are given to illustrate the methodology. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004.  相似文献   

7.
We study a deterministic two‐machine flowshop scheduling problem with an assumption that one of the two machines is not available in a specified time period. This period can be due to a breakdown, preventive maintenance, or processing unfinished jobs from a previous planning horizon. The problem is known to be NP‐hard. Pseudopolynomial dynamic programming algorithms and heuristics with worst case error bounds are given in the literature to solve the problem. They are different for the cases when the unavailability interval is for the first or second machine. The existence of a fully polynomial time approximation scheme (FPTAS) was formulated as an open conjecture in the literature. In this paper, we show that the two cases of the problem under study are equivalent to similar partition type problems. Then we derive a generic FPTAS for the latter problems with O(n54) time complexity. © 2003 Wiley Periodicals, Inc. Naval Research Logistics, 2004.  相似文献   

8.
We consider the problem of rescheduling n jobs to minimize the makespan on m parallel identical processors when m changes value. We show this problem to be NP-hard in general. Call a list schedule totally optimal if it is optimal for all m = 1, …,n. When n is less than 6, there always exists a totally optimal schedule, but for n ≥ 6 this can fail. We show that an exact solution is less robust than the largest processing time first (LPT) heuristic and discuss implications for polynomial approximation schemes and hierarchical planning models.  相似文献   

9.
We study the problem of multimode scheduling tasks on dedicated processors, with the objective of minimizing the maximum completion time. Each task can be undertaken in one among a set of predefined alternative modes, where each mode specifies a required set of dedicated processors and a processing time. At any time each processor can be used by a single task at most. General precedence constraints exist among tasks, and task preemption is not allowed. The problem consists of assigning a mode and a starting time to each task, respecting processor and precedence constraints, to minimize the time required to complete all tasks. The problem is NP-hard in several particular cases. In previous works, we studied algorithms in which a solution was obtained by means of an iterative procedure that combines mode assignment and sequencing phases separately. In this paper, we present some new heuristics where the decision on the mode assignment is taken on the basis of a partial schedule. Then, for each task, the mode selection and the starting time are chosen simultaneously considering the current processor usage. Different lower bounds are derived from a mathematical formulation of the problem and from a graph representation of a particular relaxed version of the problem. Heuristic solutions and lower bounds are evaluated on randomly generated test problems. © 1999 John Wiley & Sons, Inc. Naval Research Logistics 46: 893–911, 1999  相似文献   

10.
In the last decade, there has been much progress in understanding scheduling problems in which selfish jobs aim to minimize their individual completion time. Most of this work has focused on makespan minimization as social objective. In contrast, we consider as social cost the total weighted completion time, that is, the sum of the agent costs, a standard definition of welfare in economics. In our setting, jobs are processed on restricted uniform parallel machines, where each machine has a speed and is only capable of processing a subset of jobs; a job's cost is its weighted completion time; and each machine sequences its jobs in weighted shortest processing time (WSPT) order. Whereas for the makespan social cost the price of anarchy is not bounded by a constant in most environments, we show that for our minsum social objective the price of anarchy is bounded above by a small constant, independent of the instance. Specifically, we show that the price of anarchy is exactly 2 for the class of unit jobs, unit speed instances where the finite processing time values define the edge set of a forest with the machines as nodes. For the general case of mixed job strategies and restricted uniform machines, we prove that the price of anarchy equals 4. From a classical machine scheduling perspective, our results establish the same constant performance guarantees for WSPT list scheduling. © 2012 Wiley Periodicals, Inc. Naval Research Logistics, 2012  相似文献   

11.
In this paper we consider the discrete time/resource trade-off problem in project networks. Given a project network consisting of nodes (activities) and arcs (technological precedence relations), in which the duration of the activities is a discrete, nonincreasing function of the amount of a single renewable resource committed to it, the discrete time/resource trade-off problem minimizes the project makespan subject to precedence constraints and a single renewable resource constraint. For each activity, a work content is specified such that all execution modes (duration/resource requirement pairs) for performing the activity are allowed as long as the product of the duration and the resource requirement is at least as large as the specified work content. We present a tabu search procedure which is based on a decomposition of the problem into a mode assignment phase and a resource-constrained project scheduling phase with fixed mode assignments. Extensive computational experience, including a comparison with other local search methods, is reported. © 1998 John Wiley & Sons, Inc. Naval Research Logistics 45: 553–578, 1998  相似文献   

12.
We consider server scheduling on parallel dedicated machines to minimize the makespan. Each job has a loading operation and a processing operation. The loading operation requires a server that serves all the jobs. Each machine has a given set of jobs to process, and the processing sequence is known and fixed. We design a polynomial‐time algorithm to solve the two‐machine case of the problem. When the number of machines is arbitrary, the problem becomes strongly NP‐hard even if all the jobs have the same processing length or all the loading operations require a unit time. We design two heuristic algorithms to treat the case where all the loading times are unit and analyze their performance.  相似文献   

13.
Extending Sastry's result on the uncapacitated two‐commodity network design problem, we completely characterize the optimal solution of the uncapacitated K‐commodity network design problem with zero flow costs for the case when K = 3. By solving a set of shortest‐path problems on related graphs, we show that the optimal solutions can be found in O(n3) time when K = 3, where n is the number of nodes in the network. The algorithm depends on identifying a list of “basic patterns”; the number of basic patterns grows exponentially with K. We also show that the uncapacitated K‐commodity network design problem can be solved in O(n3) time for general K if K is fixed; otherwise, the time for solving the problem is exponential. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004  相似文献   

14.
We consider open‐shop scheduling problems where operation‐processing times are a convex decreasing function of a common limited nonrenewable resource. The scheduler's objective is to determine the optimal job sequence on each machine and the optimal resource allocation for each operation in order to minimize the makespan. We prove that this problem is NP‐hard, but for the special case of the two‐machine problem we provide an efficient optimization algorithm. We also provide a fully polynomial approximation scheme for solving the preemptive case. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2006  相似文献   

15.
The resource‐constrained project scheduling problem (RCPSP) consists of a set of non‐preemptive activities that follow precedence relationship and consume resources. Under the limited amount of the resources, the objective of RCPSP is to find a schedule of the activities to minimize the project makespan. This article presents a new genetic algorithm (GA) by incorporating a local search strategy in GA operators. The local search strategy improves the efficiency of searching the solution space while keeping the randomness of the GA approach. Extensive numerical experiments show that the proposed GA with neighborhood search works well regarding solution quality and computational time compared with existing algorithms in the RCPSP literature, especially for the instances with a large number of activities. © 2011 Wiley Periodicals, Inc. Naval Research Logistics, 2011  相似文献   

16.
讨论作业具有线性加工时间,作业间具有链约束的两台处理机流水作业排序问题,目标函数为极小化完工时间。在作业加工时间简单线性恶化下,提出作业的非负开始和停止延迟恶化率,构造了满足约束条件的复合作业。在此基础上,给出作业间具有平行链约束的两台处理机流水作业排序问题的最优多项式算法。  相似文献   

17.
We consider a single-machine problem of scheduling n independent jobs to minimize makespan, in which the processing time of job Jj grows by wj with each time unit its start is delayed beyond a given common critical date d. This processing time is pj if Jj starts by d. We show that this problem is NP-hard, give a pseudopolynomial algorithm that runs in time and O(nd) space, and develop a branch-and-bound algorithm that solves instances with up to 100 jobs in a reasonable amount of time. We also introduce the case of bounded deterioration, where the processing time of a job grows no further if the job starts after a common maximum deterioration date D > d. For this case, we give two pseudopolynomial time algorithms: one runs in O(n2d(D − d) time and O(nd(D − d)) space, the other runs in pj)2) time and pj) space. © 1998 John Wiley & Sons, Inc. Naval Research Logistics 45: 511–523, 1998  相似文献   

18.
We investigate the solvability of two single‐machine scheduling problems when the objective is to identify among all job subsets with cardinality k,1≤kn, the one that has the minimum objective function value. For the single‐machine minimum maximum lateness problem, we conclude that the problem is solvable in O(n2) time using the proposed REMOVE algorithm. This algorithm can also be used as an alternative to Moore's algorithm to solve the minimum number of tardy jobs problem by actually solving the hierarchical problem in which the objective is to minimize the maximum lateness subject to the minimum number of tardy jobs. We then show that the REMOVE algorithm cannot be used to solve the general case of the single‐machine total‐weighted completion time problem; we derive sufficient conditions among the job parameters so that the total weighted completion time problem becomes solvable in O(n2) time. © 2013 Wiley Periodicals, Inc. Naval Research Logistics 60: 449–453, 2013  相似文献   

19.
It is well known that a minimal makespan permutation sequence exists for the n × 3 flow shop problem and for the n × m flow shop problem with no inprocess waiting when processing times for both types of problems are positive. It is shown in this paper that when the assumption of positive processing times is relaxed to include nonnegative processing times, optimality of permutation schedules cannot be guaranteed.  相似文献   

20.
We develop polynomial algorithms for several cases of the NP-hard open shop scheduling problem of minimizing the number of late jobs by utilizing some recent results for the open shop makespan problem. For the two machine common due date problem, we assume that either the machines or the jobs are ordered. For the m machine common due date problem, we assume that one machine is maximal and impose a restriction on its load. © 1998 John Wiley & Sons, Inc. Naval Research Logistics 45: 525–532, 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号