首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Burn‐in is a technique to enhance reliability by eliminating weak items from a population of items having heterogeneous lifetimes. System burn‐in can improve system reliability, but the conditions for system burn‐in to be performed after component burn‐in remain a little understood mathematical challenge. To derive such conditions, we first introduce a general model of heterogeneous system lifetimes, in which the component burn‐in information and assembly problems are related to the prediction of system burn‐in. Many existing system burn‐in models become special cases and two important results are identified. First, heterogeneous system lifetimes can be understood naturally as a consequence of heterogeneous component lifetimes and heterogeneous assembly quality. Second, system burn‐in is effective if assembly quality variation in the components and connections which are arranged in series is greater than a threshold, where the threshold depends on the system structure and component failure rates. © 2003 Wiley Periodicals, Inc. Naval Research Logistics 50: 364–380, 2003.  相似文献   

2.
We consider the classical problem of whether certain classes of lifetime distributions are preserved under the formation of coherent systems. Under the assumption of independent and identically distributed (i.i.d.) component lifetimes, we consider the NBUE (new better than used in expectation) and NWUE (new worse than used in expectation) classes. First, a necessary condition for a coherent system to preserve the NBUE class is given. Sufficient conditions are then obtained for systems satisfying this necessary condition. The sufficient conditions are satisfied for a collection of systems which includes all parallel systems, but the collection is shown to be strictly larger. We also prove that no coherent system preserves the NWUE class. As byproducts of our study, we obtain the following results for the case of i.i.d. component lifetimes: (a) the DFR (decreasing failure rate) class is preserved by no coherent systems other than series systems, and (b) the IMRL (increasing mean residual life) class is not preserved by any coherent systems. Generalizations to the case of dependent component lifetimes are briefly discussed.  相似文献   

3.
Failure rate and mean residual life are two important characteristics for studying reliability of products. In literature, some work studied the shape of failure rate function based on the knowledge of the associated probability density function; some other work investigated the shape of mean residual life function based on the shape of the associated failure rate function separately for continuous case and discrete case. In this article, a general approach is developed which can be applied to the aforementioned studies. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004  相似文献   

4.
Burn‐in procedure is a manufacturing technique that is intended to eliminate early failures of system or product. Burning‐in a component or system means to subject it to a period of use prior to being used in field. Generally, burn‐in is considered expensive and so the length of burn‐in is typically limited. Thus, burn‐in is most often accomplished in an accelerated environment in order to shorten the burn‐in process. A new failure rate model for an accelerated burn‐in procedure, which incorporates the accelerated ageing process induced by the accelerated environmental stress, is proposed. Under a more general assumption on the shape of failure rate function of products, which includes the traditional bathtub‐shaped failure rate function as a special case, upper bounds for optimal burn‐in time will be derived. A numerical example will also be given for illustration. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2006  相似文献   

5.
Following a review of the basic ideas in structural reliability, including signature‐based representation and preservation theorems for systems whose components have independent and identically distributed (i.i.d.) lifetimes, extensions that apply to the comparison of coherent systems of different sizes, and stochastic mixtures of them, are obtained. It is then shown that these results may be extended to vectors of exchangeable random lifetimes. In particular, for arbitrary systems of sizes m < n with exchangeable component lifetimes, it is shown that the distribution of an m‐component system's lifetime can be written as a mixture of the distributions of k‐out‐of‐n systems. When the system has n components, the vector of coefficients in this mixture representation is precisely the signature of the system defined in Samaniego, IEEE Trans Reliabil R–34 (1985) 69–72. These mixture representations are then used to obtain new stochastic ordering properties for coherent or mixed systems of different sizes. © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   

6.
研究了用静态试验评价无线电引信质量性能的方法。分析了静态试验项目、样本量的确定,建立了各组件失效与引信失效的对应关系,提出了通过组件的失效信息计算引信失效率的方法。  相似文献   

7.
In this paper we first introduce and study the notion of failure profiles which is based on the concepts of paths and cuts in system reliability. The relationship of failure profiles to two notions of component importance is highlighted, and an expression for the density function of the lifetime of a coherent system, with independent and not necessarily identical component lifetimes, is derived. We then demonstrate the way that failure profiles can be used to establish likelihood ratio orderings of lifetimes of two systems. Finally we use failure profiles to obtain bounds, in the likelihood ratio sense, on the lifetimes of coherent systems with independent and not necessarily identical component lifetimes. The bounds are relatively easy to compute and use. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004  相似文献   

8.
We study tail hazard rate ordering properties of coherent systems using the representation of the distribution of a coherent system as a mixture of the distributions of the series systems obtained from its path sets. Also some ordering properties are obtained for order statistics which, in this context, represent the lifetimes of k‐out‐of‐n systems. We pay special attention to systems with components satisfying the proportional hazard rate model or with exponential, Weibull and Pareto type II distributions. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   

9.
We consider a system that depends on a single vital component. If this component fails, the system life will terminate. If the component is replaced before its failure then the system life may be extended; however, there are only a finite number of spare components. In addition, the lifetimes of these spare components are not necessarily identically distributed. We propose a model for scheduling component replacements so as to maximize the expected system survival. We find the counterintuitive result that when comparing components' general lifetime distributions based on stochastic orderings, not even the strongest ordering provides an a priori guarantee of the optimal sequencing of components. © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   

10.
In progressive censoring, items are removed at certain times during the life test. Commonly, it is assumed that the removed items are used for further testing. In order to take into account information about these additional testing in inferential procedures, we propose a two‐step model of stage life testing with one fixed stage‐change time which incorporates information about both the removed items (further tested under different conditions) and those remaining in the current life test. We show that some marginal distributions in our model correspond either to progressive censoring with a fixed censoring time or to a simple‐step stress model. Furthermore, assuming a cumulative exposure model, we establish exact inferential results for the distribution parameters when the lifetimes are exponentially distributed. An extension to Weibull distributed lifetimes is also discussed.  相似文献   

11.
Burn‐in is a widely used method to improve the quality of products or systems after they have been produced. In this paper, we study burn‐in procedure for a system that is maintained under periodic inspection and perfect repair policy. Assuming that the underlying lifetime distribution of a system has an initially decreasing and/or eventually increasing failure rate function, we derive upper and lower bounds for the optimal burn‐in time, which maximizes the system availability. Furthermore, adopting an age replacement policy, we derive upper and lower bounds for the optimal age parameter of the replacement policy for each fixed burn‐in time and a uniform upper bound for the optimal burn‐in time given the age replacement policy. These results can be used to reduce the numerical work for determining both optimal burn‐in time and optimal replacement policy. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   

12.
This study addresses the allocation of matched active redundancy components to coherent systems with base components having statistically dependent lifetimes. We consider base component lifetimes and redundancy component lifetimes which are both stochastic arrangement monotone with respect to a pair of components given the lifetimes of the other components. In this context, allocating a more reliable redundancy component to the weaker base component is shown to incur a stochastically larger system lifetime. Numerical examples are presented as an illustration of the theoretical results.  相似文献   

13.
This article studies coherent systems of heterogenous and statistically dependent components' lifetimes. We present a sufficient and necessary condition for a stochastically longer system lifetime resulted by allocating a single active redundancy. For exchangeable components' lifetimes, allocating the redundancy to the component with more minimal path sets is proved to produce a more reliable system, and for systems with stochastic arrangement increasing components' lifetimes and symmetric structure with respect to two components, allocating the redundancy to the weaker one brings forth a larger reliability. Several numerical examples are presented to illustrate the theoretical results as well. © 2016 Wiley Periodicals, Inc. Naval Research Logistics 63: 335–345, 2016  相似文献   

14.
For a component operating in random environment, whose hazard rate is assumed to be the realization of a suitable increasing stochastic process, conditions are found such that its lifetime is increasing in likelihood ratio (ILR). For the lifetimes of two components of the same kind some comparisons based on partial stochastic orders are presented. Some applications to the case of repairable components are finally provided. © 1998 John Wiley & Sons, Inc. Naval Research Logistics 45: 365–375, 1998  相似文献   

15.
There has been much research on the general failure model recently. In the general failure model, when the unit fails at its age t, Type I failure (minor failure) occurs with probability 1 ? p(t) and Type II failure (catastrophic failure) occurs with probability p(t). In the previous research, some specific shapes (constant, non‐decreasing, or bathtub‐shape) on the probability function p(t) are assumed. In this article, general results on some probability functions are obtained and applied to study the shapes of p(t). The results are also applied to determining the optimal inspection and allocation policies in maintenance problems. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   

16.
The sequential order statistics (SOS) are a good way to model the lifetimes of the components in a system when the failure of a component at time t affects the performance of the working components at this age t. In this article, we study properties of the lifetimes of the coherent systems obtained using SOS. Specifically, we obtain a mixture representation based on the signature of the system. This representation is used to obtain stochastic comparisons. To get these comparisons, we obtain some ordering properties for the SOS, which in this context represent the lifetimes of k‐out‐of‐n systems. In particular, we show that they are not necessarily hazard rate ordered. © 2011 Wiley Periodicals, Inc. Naval Research Logistics, 2011  相似文献   

17.
In this article, we study aging properties of parallel and series systems with a random number of components. We show that the decreasing likelihood ratio property is closed under the formation of random minima. We also show, by counterexamples, that other aging properties are not closed under the formation of random minima or maxima. Some mistakes in the literature are corrected. © 2014 Wiley Periodicals, Inc. Naval Research Logistics 61: 238–243, 2014  相似文献   

18.
As a relevant topic in reliability theory, the preservation of aging properties under the formation of various coherent structures contributes to improving system performance through better structure design and more effective system maintenance. The classical research in this line usually focuses upon coherent systems with independent component lifetimes. Recently, some authors discussed the preservation of IFR, NBU, and DMRL in the setting of dependent component lifetimes. This paper further investigates sufficient conditions for coherent systems with dependent component lifetimes to preserve aging properties including NBUC, NBU (2), DMRL, and their dual versions. Some examples are presented to illustrate coherent structures and typical copula functions fulfilling the present sufficient conditions as well.  相似文献   

19.
In a 1973 paper J. D. Esary, A. W. Marshall, and F. Proschan [5] considered a shock model giving rise to various nonparametric classes of life distributions of interest in reliability theory. A number of authors have extended these results in a variety of directions. In this paper, alternative proofs of the increasing failure rate (IFR) and decreasing mean residual life (DMRL) results are given which do not make use of the theory of total positivity. Some bivariate extensions are then obtained using a shock model similar to that originally used by H. W. Block, A. S. Paulson, and R. C. Kohberger [2] to unify various bivariate exponential distributions.  相似文献   

20.
Burn‐in is a widely used method to improve the quality of products or systems after they have been produced. In this paper, we consider the problem of determining bounds to the optimal burn‐in time and optimal replacement policy maximizing the steady state availability of a repairable system. It is assumed that two types of system failures may occur: One is Type I failure (minor failure), which can be removed by a minimal repair, and the other is Type II failure (catastrophic failure), which can be removed only by a complete repair. Assuming that the underlying lifetime distribution of the system has a bathtub‐shaped failure rate function, upper and lower bounds for the optimal burn‐in time are provided. Furthermore, some other applications of optimal burn‐in are also considered. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号