首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The scheduling problem addressed in this paper concerns a manufacturer who produces a variety of product types and operates in a make‐to‐order environment. Each customer order consists of known quantities of the different product types, and must be delivered as a single shipment. Periodically the manufacturer schedules the accumulated and unscheduled customer orders. Instances of this problem occur across industries in manufacturing as well as in service environments. In this paper we show that the problem of minimizing the weighted sum of customer order delivery times is unary NP‐hard. We characterize the optimal schedule, solve several special cases of the problem, derive tight lower bounds, and propose several heuristic solutions. We report the results of a set of computational experiments to evaluate the lower bounding procedures and the heuristics, and to determine optimal solutions. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005.  相似文献   

2.
This paper studies a scheduling problem arising in a beef distribution system where pallets of various types of beef products in the warehouse are first depalletized and then individual cases are loaded via conveyors to the trucks which deliver beef products to various customers. Given each customer's demand for each type of beef, the problem is to find a depalletizing and truck loading schedule that fills all the demands at a minimum total cost. We first show that the general problem where there are multiple trucks and each truck covers multiple customers is strongly NP‐hard. Then we propose polynomial‐time algorithms for the case where there are multiple trucks, each covering only one customer, and the case where there is only one truck covering multiple customers. We also develop an optimal dynamic programming algorithm and a heuristic for solving the general problem. By comparing to the optimal solutions generated by the dynamic programming algorithm, the heuristic is shown to be capable of generating near optimal solutions quickly. © 2003 Wiley Periodicals, Inc. Naval Research Logistics, 2003  相似文献   

3.
Consider a sequential dynamic pricing model where a seller sells a given stock to a random number of customers. Arriving one at a time, each customer will purchase one item if the product price is lower than her personal reservation price. The seller's objective is to post a potentially different price for each customer in order to maximize the expected total revenue. We formulate the seller's problem as a stochastic dynamic programming model, and develop an algorithm to compute the optimal policy. We then apply the results from this sequential dynamic pricing model to the case where customers arrive according to a continuous‐time point process. In particular, we derive tight bounds for the optimal expected revenue, and develop an asymptotically optimal heuristic policy. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004.  相似文献   

4.
We consider a supplier–customer relationship where the customer faces a typical Newsvendor problem of determining perishable capacity to meet uncertain demand. The customer outsources a critical, demand‐enhancing service to an outside supplier, who receives a fixed share of the revenue from the customer. Given such a linear sharing contract, the customer chooses capacity and the service supplier chooses service effort level before demand is realized. We consider the two cases when these decisions are made simultaneously (simultaneous game) or sequentially (sequential game). For each game, we analyze how the equilibrium solutions vary with the parameters of the problem. We show that in the equilibrium, it is possible that either the customer's capacity increases or the service supplier's effort level decreases when the supplier receives a larger share of the revenue. We also show that given the same sharing contract, the sequential game always induces a higher capacity and more effort. For the case of additive effort effect and uniform demand distribution, we consider the customer's problem of designing the optimal contract with or without a fixed payment in the contract, and obtain sensitivity results on how the optimal contract depends on the problem parameters. For the case of fixed payment, it is optimal to allocate more revenue to the supplier to induce more service effort when the profit margin is higher, the cost of effort is lower, effort is more effective in stimulating demand, the variability of demand is smaller or the supplier makes the first move in the sequential game. For the case of no fixed payment, however, it is optimal to allocate more revenue to the supplier when the variability of demand is larger or its mean is smaller. Numerical examples are analyzed to validate the sensitivity results for the case of normal demand distribution and to provide more managerial insights. © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   

5.
In this paper, we explore trade‐offs between operational flexibility and operational complexity in periodic distribution problems. We consider the gains from operational flexibility in terms of vehicle routing costs and customer service benefits, as well as the costs of operational complexity in terms of modeling, solution methods, and implementation challenges for drivers and customers. The period vehicle routing problem (PVRP) is a variation of the classic vehicle routing problem in which delivery routes are constructed for a period of time; the PVRP with service choice (PVRP‐SC) extends the PVRP to allow service (visit) frequency to become a decision of the model. For the periodic distribution problems represented by PVRP and PVRP‐SC, we introduce operational flexibility levers and a set of quantitative measures to evaluate the trade‐offs between flexibility and complexity. We develop a Tabu Search heuristic to incorporate a range of operational flexibility options. We analyze the potential value and the increased operational complexity of the flexibility levers. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   

6.
We consider a make‐to‐order manufacturer facing random demand from two classes of customers. We develop an integrated model for reserving capacity in anticipation of future order arrivals from high priority customers and setting due dates for incoming orders. Our research exhibits two distinct features: (1) we explicitly model the manufacturer's uncertainty about the customers' due date preferences for future orders; and (2) we utilize a service level measure for reserving capacity rather than estimating short and long term implications of due date quoting with a penalty cost function. We identify an interesting effect (“t‐pooling”) that arises when the (partial) knowledge of customer due date preferences is utilized in making capacity reservation and order allocation decisions. We characterize the relationship between the customer due date preferences and the required reservation quantities and show that not considering the t‐pooling effect (as done in traditional capacity and inventory rationing literature) leads to excessive capacity reservations. Numerical analyses are conducted to investigate the behavior and performance of our capacity reservation and due date quoting approach in a dynamic setting with multiple planning horizons and roll‐overs. One interesting and seemingly counterintuitive finding of our analyses is that under certain conditions reserving capacity for high priority customers not only improves high priority fulfillment, but also increases the overall system fill rate. © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   

7.
Consider a supplier offering a product to several potential demand sources, each with a unique revenue, size, and probability that it will materialize. Given a long procurement lead time, the supplier must choose the orders to pursue and the total quantity to procure prior to the selling season. We model this as a selective newsvendor problem of maximizing profits where the total (random) demand is given by the set of pursued orders. Given that the dimensionality of a mixed‐integer linear programming formulation of the problem increases exponentially with the number of potential orders, we develop both a tailored exact algorithm based on the L‐shaped method for two‐stage stochastic programming as well as a heuristic method. We also extend our solution approach to account for piecewise‐linear cost and revenue functions as well as a multiperiod setting. Extensive experimentation indicates that our exact approach rapidly finds optimal solutions with three times as many orders as a state‐of‐the‐art commercial solver. In addition, our heuristic approach provides average gaps of less than 1% for the largest problems that can be solved exactly. Observing that the gaps decrease as problem size grows, we expect the heuristic approach to work well for large problem instances. © 2008 Wiley Periodicals, Inc. Naval Research Logistics 2008  相似文献   

8.
We consider a manufacturer (i.e., a capacitated supplier) that produces to stock and has two classes of customers. The primary customer places orders at regular intervals of time for a random quantity, while the secondary customers request a single item at random times. At a predetermined time the manufacturer receives advance demand information regarding the order size of the primary customer. If the manufacturer is not able to fill the primary customer's demand, there is a penalty. On the other hand, serving the secondary customers results in additional profit; however, the manufacturer can refuse to serve the secondary customers in order to reserve inventory for the primary customer. We characterize the manufacturer's optimal production and stock reservation policies that maximize the manufacturer's discounted profit and the average profit per unit time. We show that these policies are threshold‐type policies, and these thresholds are monotone with respect to the primary customer's order size. Using a numerical study we provide insights into how the value of information is affected by the relative demand size of the primary and secondary customers. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   

9.
In this paper we consider the capacitated multi‐facility Weber problem with the Euclidean, squared Euclidean, and ?p‐distances. This problem is concerned with locating m capacitated facilities in the Euclidean plane to satisfy the demand of n customers with the minimum total transportation cost. The demand and location of each customer are known a priori and the transportation cost between customers and facilities is proportional to the distance between them. We first present a mixed integer linear programming approximation of the problem. We then propose new heuristic solution methods based on this approximation. Computational results on benchmark instances indicate that the new methods are both accurate and efficient. © 2006 Wiley Periodicals, Inc. Naval Research Logistics 2006  相似文献   

10.
We consider a class of facility location problems with a time dimension, which requires assigning every customer to a supply facility in each of a finite number of periods. Each facility must meet all assigned customer demand in every period at a minimum cost via its production and inventory decisions. We provide exact branch‐and‐price algorithms for this class of problems and several important variants. The corresponding pricing problem takes the form of an interesting class of production planning and order selection problems. This problem class requires selecting a set of orders that maximizes profit, defined as the revenue from selected orders minus production‐planning‐related costs incurred in fulfilling the selected orders. We provide polynomial‐time dynamic programming algorithms for this class of pricing problems, as well as for generalizations thereof. Computational testing indicates the advantage of our branch‐and‐price algorithm over various approaches that use commercial software packages. These tests also highlight the significant cost savings possible from integrating location with production and inventory decisions and demonstrate that the problem is rather insensitive to forecast errors associated with the demand streams. © 2011 Wiley Periodicals, Inc. Naval Research Logistics, 2011  相似文献   

11.
Motivated by the flow of products in the iron and steel industry, we study an identical and parallel machine scheduling problem with batch deliveries, where jobs finished on the parallel machines are delivered to customers in batches. Each delivery batch has a capacity and incurs a cost. The objective is to find a coordinated production and delivery schedule that minimizes the total flow time of jobs plus the total delivery cost. This problem is an extension of the problem considered by Hall and Potts, Ann Oper Res 135 (2005) 41–64, who studied a two‐machine problem with an unbounded number of transporters and unbounded delivery capacity. We first provide a dynamic programming algorithm to solve a special case with a given job assignment to the machines. A heuristic algorithm is then presented for the general problem, and its worst‐case performance ratio is analyzed. The computational results show that the heuristic algorithm can generate near‐optimal solutions. Finally, we offer a fully polynomial‐time approximation scheme for a fixed number of machines. © 2016 Wiley Periodicals, Inc. Naval Research Logistics 63: 492–502, 2016  相似文献   

12.
We consider a supplier with finite production capacity and stochastic production times. Customers provide advance demand information (ADI) to the supplier by announcing orders ahead of their due dates. However, this information is not perfect, and customers may request an order be fulfilled prior to or later than the expected due date. Customers update the status of their orders, but the time between consecutive updates is random. We formulate the production‐control problem as a continuous‐time Markov decision process and prove there is an optimal state‐dependent base‐stock policy, where the base‐stock levels depend upon the numbers of orders at various stages of update. In addition, we derive results on the sensitivity of the state‐dependent base‐stock levels to the number of orders in each stage of update. In a numerical study, we examine the benefit of ADI, and find that it is most valuable to the supplier when the time between updates is moderate. We also consider the impact of holding and backorder costs, numbers of updates, and the fraction of customers that provide ADI. In addition, we find that while ADI is always beneficial to the supplier, this may not be the case for the customers who provide the ADI. © 2011 Wiley Periodicals, Inc. Naval Research Logistics, 2011  相似文献   

13.
In some industries such as automotive, production costs are largely fixed and therefore maximizing revenue is the main objective. Manufacturers use promotions directed to the end customers and/or retailers in their distribution channels to increase sales and market share. We study a game theoretical model to examine the impact of “retailer incentive” and “customer rebate” promotions on the manufacturer's pricing and the retailer's ordering/sales decisions. The main tradeoff is that customer rebates are given to every customer, while the use of retailer incentives is controlled by the retailer. We consider several models with different demand characteristics and information asymmetry between the manufacturer and a price discriminating retailer, and we determine which promotion would benefit the manufacturer under which market conditions. When demand is deterministic, we find that retailer incentives increase the manufacturer's profits (and sales) while customer rebates do not unless they lead to market expansion. When the uncertainty in demand (“market potential”) is high, a customer rebate can be more profitable than the retailer incentive for the manufacturer. With numerical examples, we provide additional insights on the profit gains by the right choice of promotion.© 2009 Wiley Periodicals, Inc. Naval Research Logistics, 2010  相似文献   

14.
This paper considers a new class of scheduling problems arising in logistics systems in which two different transportation modes are available at the stage of product delivery. The mode with the shorter transportation time charges a higher cost. Each job ordered by the customer is first processed in the manufacturing facility and then transported to the customer. There is a due date for each job to arrive to the customer. Our approach integrates the machine scheduling problem in the manufacturing stage with the transportation mode selection problem in the delivery stage to achieve the global maximum benefit. In addition to studying the NP‐hard special case in which no tardy job is allowed, we consider in detail the problem when minimizing the sum of the total transportation cost and the total weighted tardiness cost is the objective. We provide a branch and bound algorithm with two different lower bounds. The effectiveness of the two lower bounds is discussed and compared. We also provide a mathematical model that is solvable by CPLEX. Computational results show that our branch and bound algorithm is more efficient than CPLEX. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005  相似文献   

15.
This study addresses the design of a three‐stage production/distribution system where the first stage includes the set of established retailers and the second and third stages include the sets of potential distribution centers (DCs) and potential capacitated suppliers, respectively. In this problem, in addition to the fixed location/operating costs associated with locating DCs and suppliers, we consider the coordinated inventory replenishment decisions at the located DCs and retailers along with the appropriate inventory costs explicitly. In particular, we account for the replenishment and holding costs at the retailers and selected DCs, and the fixed plus distance‐based transportation costs between the selected plants and their assigned DCs, and between the selected DCs and their respective retailers, explicitly. The resulting formulation is a challenging mixed‐integer nonlinear programming model for which we propose efficient heuristic solution approaches. Our computational results demonstrate the performance of the heuristic approaches as well as the value of integrated decision‐making by verifying that significant cost savings are realizable when the inventory decisions and costs are incorporated in the production distribution system design. © 2012 Wiley Periodicals, Inc. Naval Research Logistics 59: 172–195, 2012  相似文献   

16.
Consider a monopolist who sells a single product to time‐sensitive customers located on a line segment. Customers send their orders to the nearest distribution facility, where the firm processes (customizes) these orders on a first‐come, first‐served basis before delivering them. We examine how the monopolist would locate its facilities, set their capacities, and price the product offered to maximize profits. We explicitly model customers' waiting costs due to both shipping lead times and queueing congestion delays and allow each customer to self‐select whether she orders or not, based on her reservation price. We first analyze the single‐facility problem and derive a number of interesting insights regarding the optimal solution. We show, for instance, that the optimal capacity relates to the square root of the customer volume and that the optimal price relates additively to the capacity and transportation delay costs. We also compare our solutions to a similar problem without congestion effects. We then utilize our single‐facility results to treat the multi‐facility problem. We characterize the optimal policy for serving a fixed interval of customers from multiple facilities when customers are uniformly distributed on a line. We also show how as the length of the customer interval increases, the optimal policy relates to the single‐facility problem of maximizing expected profit per unit distance. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   

17.
Allocation of scarce common components to finished product orders is central to the performance of assembly systems. Analysis of these systems is complex, however, when the product master schedule is subject to uncertainty. In this paper, we analyze the cost—service performance of a component inventory system with correlated finished product demands, where component allocation is based on a fair shares method. Such issuing policies are used commonly in practice. We quantify the impact of component stocking policies on finished product delays due to component shortages and on product order completion rates. These results are used to determine optimal base stock levels for components, subject to constraints on finished product service (order completion rates). Our methodology can help managers of assembly systems to (1) understand the impact of their inventory management decisions on customer service, (2) achieve cost reductions by optimizing their inventory investments, and (3) evaluate supplier performance and negotiate contracts by quantifying the effect of delivery lead times on costs and customer service. © 2001 John Wiley & Sons, Inc. Naval Research Logistics 48:409–429, 2001  相似文献   

18.
A major challenge in making supply meet demand is to coordinate transshipments across the supply chain to reduce costs and increase service levels in the face of demand fluctuations, short lead times, warehouse limitations, and transportation and inventory costs. In particular, transshipment through crossdocks, where just‐in‐time objectives prevail, requires precise scheduling between suppliers, crossdocks, and customers. In this work, we study the transshipment problem with supplier and customer time windows where flow is constrained by transportation schedules and warehouse capacities. Transportation is provided by fixed or flexible schedules and lot‐sizing is dealt with through multiple shipments. We develop polynomial‐time algorithms or, otherwise, provide the complexity of the problems studied. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005  相似文献   

19.
In this paper, we consider a situation in which a group of facilities must be constructed in order to serve a given set of customers, where the facilities might not be able to guarantee an absolute coverage to the different customers. We examine the problem of maximizing the total service reliability of the system subject to a budgetary constraint. We propose a new reformulation of this problem that facilitates the generation of tight lower and upper bounds. These bounding mechanisms are embedded within the framework of a branch‐and‐bound procedure. Computational results on problem instances ranging in size up to 100 facilities and 200 customers reveal the efficacy of the proposed exact and heuristic approaches. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2006  相似文献   

20.
This article concerns scheduling policies in a surveillance system aimed at detecting a terrorist attack in time. Terrorist suspects arriving at a public area are subject to continuous monitoring, while a surveillance team takes their biometric signatures and compares them with records stored in a terrorist database. Because the surveillance team can screen only one terrorist suspect at a time, the team faces a dynamic scheduling problem among the suspects. We build a model consisting of an M/G/1 queue with two types of customers—red and white—to study this problem. Both types of customers are impatient but the reneging time distributions are different. The server only receives a reward by serving a red customer and can use the time a customer has spent in the queue to deduce its likely type. In a few special cases, a simple service rule—such as first‐come‐first‐serve—is optimal. We explain why the problem is in general difficult and we develop a heuristic policy motivated by the fact that terrorist attacks tend to be rare events. © 2009 Wiley Periodicals, Inc. Naval Research Logistics, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号