首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
针对星上系统总线多元性导致的星载网络接口和协议不能标准化的发展瓶颈,本文基于SpaceWire总线协议,通过将静态路由(时间触发)与动态路由(事件触发)机制结合,实现了控制数据和载荷数据共用网络。静态路由完全遵循SpaceWire-D协议,在保证确定性传输的同时,通过启发式调度算法首次实现了多时间窗并行调度,并提出利用最大公约数法设计时间窗,以提高网络吞吐量;动态路由通过对随机事件和载荷数据分配优先级,实现传输路径冲突时对紧急任务的优先处理。最后在OPENT中搭建网络系统仿真模型,对所提出的路由机制进行了仿真。实验结果表明,静态路由时段网络吞吐量较现有调度算法有明显提高,动态路由实现了紧急事件优先传输。  相似文献   

2.
Given an edge‐distance graph of a set of suppliers and clients, the bottleneck problem is to assign each client to a selected supplier minimizing their maximum distance. We introduce minimum quantity commitments to balance workloads of suppliers, provide the best possible approximation algorithm, and study its generalizations and specializations. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2006  相似文献   

3.
The deterministic problem for finding an aircraft's optimal risk trajectory in a threat environment has been formulated. The threat is associated with the risk of aircraft detection by radars or similar sensors. The model considers an aircraft's trajectory in three‐dimensional (3‐D) space and represents the aircraft by a symmetrical ellipsoid with the axis of symmetry directing the trajectory. Analytical and discrete optimization approaches for routing an aircraft with variable radar cross‐section (RCS) subject to a constraint on the trajectory length have been developed. Through techniques of Calculus of Variations, the analytical approach reduces the original risk optimization problem to a vectorial nonlinear differential equation. In the case of a single detecting installation, a solution to this equation is expressed by a quadrature. A network optimization approach reduces the original problem to the Constrained Shortest Path Problem (CSPP) for a 3‐D network. The CSPP has been solved for various ellipsoid shapes and different length constraints in cases with several radars. The impact of ellipsoid shape on the geometry of an optimal trajectory as well as the impact of variable RCS on the performance of a network optimization algorithm have been analyzed and illustrated by several numerical examples. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2006  相似文献   

4.
This article examines a relaxed version of the generic vehicle routing problem. In this version, a delivery to a demand point can be split between any number of vehicles. In spite of this relaxation the problem remains computationally hard. Since only small instances of the vehicle routing problem are known to be solved using exact methods, the vehicle route construction for this problem version is approached using heuristic rules. The main contribution of this article to the existing body of literature on vehicle routing issues in (a) is presenting a new vehicle routing problem amenable to practical applications, and (b) demonstrating the potential for cost savings over similar “traditional” vehicle routing when implementing the model and solutions presented here. The solution scheme allowing for split deliveries is compared with a solution in which no split deliveries are allowed. The comparison is conducted on six sets of 30 problems each for problems of size 75, 115, and 150 demand points (all together 540 problems). For very small demands (up to 10% of vehicle's capacity) no significant difference in solutions is evident for both solution schemes. For the other five problem sets for which point demand exceeds 10% of vehicle's capacity, very significant cost savings are realized when allowing split deliveries. The savings are significant both in the total distance and the number of vehicles required. The vehicles' routes constructed by our procedure tend to cover cohesive geographical zones and retain some properties of optimal solutions.  相似文献   

5.
In this article, we study threshold‐based sales‐force incentives and their impact on a dealer's optimal effort. A phenomenon, observed in practice, is that the dealer exerts a large effort toward the end of the incentive period to boost sales and reach the threshold to make additional profits. In the literature, the resulting last‐period sales spike is sometimes called the hockey stick phenomenon (HSP). In this article, we show that the manufacturer's choice of the incentive parameters and the underlying demand uncertainty affect the dealer's optimal effort choice. This results in the sales HSP over multiple time periods even when there is a cost associated with waiting. We then show that, by linking the threshold to a correlated market signal, the HSP can be regulated. We also characterize the variance of the total sales across all the periods and demonstrate conditions under the sales variance can be reduced. © 2010 Wiley Periodicals, Inc. Naval Research Logistics, 2010  相似文献   

6.
在II型混合截尾样本下,得到了广义逆指数分布未知参数的最大似然估计。利用最大似然估计的渐近正态性构造了参数的渐近置信区间,运用Lindley's逼近方法和TierneyKadane's逼近方法计算出了参数的Bayes估计。最后,运用Monte-Carlo方法对上述估计方法结果作了模拟比较。  相似文献   

7.
This paper develops a new model for allocating demand from retailers (or customers) to a set of production/storage facilities. A producer manufactures a product in multiple production facilities, and faces demand from a set of retailers. The objective is to decide which of the production facilities should satisfy each retailer's demand, in order minimize total production, inventory holding, and assignment costs (where the latter may include, for instance, variable production costs and transportation costs). Demand occurs continuously in time at a deterministic rate at each retailer, while each production facility faces fixed‐charge production costs and linear holding costs. We first consider an uncapacitated model, which we generalize to allow for production or storage capacities. We then explore situations with capacity expansion opportunities. Our solution approach employs a column generation procedure, as well as greedy and local improvement heuristic approaches. A broad class of randomly generated test problems demonstrates that these heuristics find high quality solutions for this large‐scale cross‐facility planning problem using a modest amount of computation time. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005.  相似文献   

8.
In this work, we study manpower allocation with time windows and job‐teaming constraints. A set of jobs at dispersed locations requires teams of different types of workers where each job must be carried out in a preestablished time window and requires a specific length of time for completion. A job is satisfied if the required composite team can be brought together at the job's location for the required duration within the job's time window. The objective is to minimize a weighted sum of the total number of workers and the total traveling time. We show that construction heuristics used with simulated annealing is a good approach to solving this NP‐hard problem. In experiments, this approach is compared with solutions found using CPLEX and with lower bounds obtained from a network flow model. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005.  相似文献   

9.
We present a time decomposition for inventory routing problems. The methodology is based on valuing inventory with a concave piecewise linear function and then combining solutions to single‐period subproblems using dynamic programming techniques. Computational experiments show that the resulting value function accurately captures the inventory's value, and solving the multiperiod problem as a sequence of single‐period subproblems drastically decreases computational time without sacrificing solution quality. © 2010 Wiley Periodicals, Inc. Naval Research Logistics, 2010  相似文献   

10.
In this paper we consider the problem of minimizing the costs of outsourcing warranty repairs when failed items are dynamically routed to one of several service vendors. In our model, the manufacturer incurs a repair cost each time an item needs repair and also incurs a goodwill cost while an item is awaiting and undergoing repair. For a large manufacturer with annual warranty costs in the tens of millions of dollars, even a small relative cost reduction from the use of dynamic (rather than static) allocation may be practically significant. However, due to the size of the state space, the resulting dynamic programming problem is not exactly solvable in practice. Furthermore, standard routing heuristics, such as join‐the‐shortest‐queue, are simply not good enough to identify potential cost savings of any significance. We use two different approaches to develop effective, simply structured index policies for the dynamic allocation problem. The first uses dynamic programming policy improvement while the second deploys Whittle's proposal for restless bandits. The closed form indices concerned are new and the policies sufficiently close to optimal to provide cost savings over static allocation. All results of this paper are demonstrated using a simulation study. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005  相似文献   

11.
Recent years have seen a strong trend toward outsourcing warranty repair services to outside vendors. In this article we consider the problem of dynamically routing warranty repairs to service vendors when warranties have priority levels. Each time an item under warranty fails, it is sent to one of the vendors for repair. Items covered by higher priority warranty receive higher priority in repair service. The manufacturer pays a fixed fee per repair and incurs a linear holding cost while an item is undergoing or waiting for repair. The objective is to minimize the manufacturer's long‐run average cost. Because of the complexity of the problem, it is very unlikely that there exist tractable ways to find the optimal routing strategies. Therefore, we propose five heuristic routing procedures that are applicable to real‐life problems. We evaluate the heuristics using simulation. The simulation results show that the index‐based “generalized join the shortest queue” policy, which applies a single policy improvement step to an initial state‐independent policy, performs the best among all five heuristics. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   

12.
Although quantity discount policies have been extensively analyzed, they are not well understood when there are many different buyers. This is especially the case when buyers face price‐sensitive demand. In this paper we study a supplier's optimal quantity discount policy for a group of independent and heterogeneous retailers, when each retailer faces a demand that is a decreasing function of its retail price. The problem is analyzed as a Stackelberg game whereby the supplier acts as the leader and buyers act as followers. We show that a common quantity discount policy that is designed according to buyers' individual cost and demand structures and their rational economic behavior is able to significantly stimulate demand, improve channel efficiency, and substantially increase profits for both the supplier and buyers. Furthermore, we show that the selection of all‐units or incremental quantity discount policies has no effect on the benefits that can be obtained from quantity discounts. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005  相似文献   

13.
This article studies a min‐max path cover problem, which is to determine a set of paths for k capacitated vehicles to service all the customers in a given weighted graph so that the largest path cost is minimized. The problem has wide applications in vehicle routing, especially when the minimization of the latest service completion time is a critical performance measure. We have analyzed four typical variants of this problem, where the vehicles have either unlimited or limited capacities, and they start from either a given depot or any depot of a given depot set. We have developed approximation algorithms for these four variants, which achieve approximation ratios of max{3 ‐ 2/k,2}, 5, max{5 ‐ 2/k,4}, and 7, respectively. We have also analyzed the approximation hardness of these variants by showing that, unless P = NP , it is impossible for them to achieve approximation ratios less than 4/3, 3/2, 3/2, and 2, respectively. We have further extended the techniques and results developed for this problem to other min‐max vehicle routing problems.© 2010 Wiley Periodicals, Inc. Naval Research Logistics, 2010  相似文献   

14.
We develop a robust queueing network analyzer algorithm to approximate the steady-state performance of a single-class open queueing network of single-server queues with Markovian routing. The algorithm allows nonrenewal external arrival processes, general service-time distributions and customer feedback. The algorithm is based on a decomposition approximation, where each flow is partially characterized by its rate and a continuous function that measures the stochastic variability over time. This function is a scaled version of the variance-time curve, called the index of dispersion for counts (IDC). The required IDC functions for the external arrival processes can be calculated from the model primitives or estimated from data. Approximations for the IDC functions of the internal flows are calculated by solving a set of linear equations. The theoretical basis is provided by heavy-traffic limits for the flows established in our previous papers. A robust queueing technique is used to generate approximations of the mean steady-state performance at each queue from the IDC of the total arrival flow and the service specification at that queue. The algorithm's effectiveness is supported by extensive simulation studies.  相似文献   

15.
In this paper, we extend the results of Ferguson M. Naval Research Logistics 8 . on an end‐product manufacturer's choice of when to commit to an order quantity from its parts supplier. During the supplier's lead‐time, information arrives about end‐product demand. This information reduces some of the forecast uncertainty. While the supplier must choose its production quantity of parts based on the original forecast, the manufacturer can wait to place its order from the supplier after observing the information update. We find that a manufacturer is sometimes better off with a contract requiring an early commitment to its order quantity, before the supplier commits resources. On the other hand, the supplier sometimes prefers a delayed commitment. The preferences depend upon the amount of demand uncertainty resolved by the information as well as which member of the supply chain sets the exchange price. We also show conditions where demand information updating is detrimental to both the manufacturer and the supplier. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005  相似文献   

16.
Transportation problems with uncertain demands are useful applied models themselves, and also they represent in a formal way the problem of estimating demands for use in deterministic models. We consider the effects of using a small, aggregate model of this type in place of a larger, more detailed one. Formulation of the aggregate objective function turns out to depend on how one chooses to use (disaggregate) the solution; several alternative methods are examined. Bounds are derived on the error induced by the approximation, thus facilitating comparison of alternative aggregations. We also consider the problem of estimating demands for an aggregate-level deterministic problem. In a specific sense, it is often not the case (as one might expect) that such aggregate demands are easier to estimate than the detailed demands. This is because aggregation and centralization are not the same thing.  相似文献   

17.
This article proposes a strategic reason for a proprietary component supplier to license her technology to a competitor or a manufacturer: her anticipation of the manufacturer's strategic commitment to invest in research and development (R&D). We address this phenomenon with a game theoretic model. Our results show that the manufacturer's full commitment to invest in R&D enables the supplier to license, sell a larger quantity through the supply chain, and charge lower prices. These results are robust to the type of demand uncertainty faced by the manufacturer within the class of increasing generalized failure rate distributions. © 2014 Wiley Periodicals, Inc. Naval Research Logistics 61: 341–350, 2014  相似文献   

18.
In this article, we analyze a discrete‐time queue that is motivated from studying hospital inpatient flow management, where the customer count process captures the midnight inpatient census. The stationary distribution of the customer count has no explicit form and is difficult to compute in certain parameter regimes. Using the Stein's method framework, we identify a continuous random variable to approximate the steady‐state customer count. The continuous random variable corresponds to the stationary distribution of a diffusion process with state‐dependent diffusion coefficients. We characterize the error bounds of this approximation under a variety of system load conditions—from lightly loaded to heavily loaded. We also identify the critical role that the service rate plays in the convergence rate of the error bounds. We perform extensive numerical experiments to support the theoretical findings and to demonstrate the approximation quality. In particular, we show that our approximation performs better than those based on constant diffusion coefficients when the number of servers is small, which is relevant to decision making in a single hospital ward.  相似文献   

19.
We study the one-warehouse multi-retailer problem under deterministic dynamic demand and concave batch order costs, where order batches have an identical capacity and the order cost function for each facility is concave within the batch. Under appropriate assumptions on holding cost structure, we obtain lower bounds via a decomposition that splits the two-echelon problem into single-facility subproblems, then propose approximation algorithms by judiciously recombining the subproblem solutions. For piecewise linear concave batch order costs with a constant number of slopes we obtain a constant-factor approximation, while for general concave batch costs we propose an approximation within a logarithmic factor of optimality. We also extend some results to subadditive order and/or holding costs.  相似文献   

20.
We consider the salvo policy problem, in which there are k moments, called salvos, at which we can fire multiple missiles simultaneously at an incoming object. Each salvo is characterized by a probability pi: the hit probability of a single missile. After each salvo, we can assess whether the incoming object is still active. If it is, we fire the missiles assigned to the next salvo. In the salvo policy problem, the goal is to assign at most n missiles to salvos in order to minimize the expected number of missiles used. We consider three problem versions. In Gould's version, we have to assign all n missiles to salvos. In the Big Bomb version, a cost of B is incurred when all salvo's are unsuccessful. Finally, we consider the Quota version in which the kill probability should exceed some quota Q. We discuss the computational complexity and the approximability of these problem versions. In particular, we show that Gould's version and the Big Bomb version admit pseudopolynomial time exact algorithms and fully polynomial time approximation schemes. We also present an iterative approximation algorithm for the Quota version, and show that a related problem is NP-complete.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号