首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 0 毫秒
1.
应用地面电磁发射清除空间碎片方法   总被引:1,自引:0,他引:1       下载免费PDF全文
针对传统化学发射的空间碎片清除技术成本过高、难以实施的问题,提出应用地基电磁发射方式的空间碎片清除新方法。通过地面电磁发射的方式以低成本将射弹运送至空间,并通过释放空间微粒云团控制空间碎片离轨,进而实现对空间碎片的清除。由于取消使用占绝大部分成本的化学推进剂,所提出的应用地基电磁发射的空间碎片清除技术为空间碎片低成本清除提供了有效解决途径。  相似文献   

2.
激光辐照空间半球体碎片时,激光与碎片表面物质相互作用,使得碎片获得速度增量和角速度增量。基于激光辐照下反喷冲量计算模型,建立了不规则形状碎片平动/转动的速度增量/角速度增量的分析模型,对半球体碎片的激光辐照效应进行了分析,得到了速度增量和角速度增量的变化规律,为激光清除半球形空间碎片提供了分析依据和方法。  相似文献   

3.
泡沫增阻法是一种清除空间碎片的新方法。首先分析了该方法的使用范围和特点,建立了其运动学模型,提出了泡沫喷射误差的计算方法,研究了影响喷射误差的4种因素。在此基础上,分析了清除不同尺寸的空间碎片所允许的喷射误差。仿真结果表明,泡沫增阻法适用于清除尺寸为米级的空间碎片,提高卫星的轨道精度是减小喷射误差最有效的手段,并对所需的轨道精度提出了要求,为该方法的进一步深入研究和实施提供了参考。  相似文献   

4.
空间碎片天基主动清除技术发展现状及趋势   总被引:6,自引:0,他引:6       下载免费PDF全文
随着国内外航天发射任务逐年增多,大量在轨滞留的失效航天器将成为未来空间资源有效利用所面临的一个严峻挑战。空间碎片天基主动清除技术是从根源上对空间资源化利用与安全处置的措施,将提升和加强近地空间的可持续循环利用。本文明晰了空间碎片天基主动清除的概念,分析了空间碎片天基主动清除技术的发展历程,提出了其发展过程中面临的非合作目标相对导航、协调控制和捕获方式及装置等主要问题,为我国空间碎片天基主动清除技术的发展提出了有益参考。  相似文献   

5.
对现有空间碎片主动清除技术进行分析,提出基于轻气炮载荷的GEO轨道空间碎片清除平台清除过程涉及的解固定速度增量拦截发射诸元问题。利用线性Hill的分析解建立命中方程组,将解非线性方程组问题转化为最优化问题,利用Matlab工具箱得到高精度的全局最优解。通过Matlab与STK互联进行了仿真验证,并对脱靶量的产生进行了分析,为新型空间碎片清除平台的可靠性提供了有力的理论支撑。  相似文献   

6.
针对导弹空间飞行环境的日益恶化,为了分析空间碎片对远程弹道导弹空间飞行安全的影响,分析了导弹弹道和空间碎片预测模型,建立了基于数值法的远程弹道导弹与空间碎片碰撞预警模型,通过仿真分析了空间碎片对远程弹道导弹飞行安全的影响.仿真结果表明,空间碎片对远程弹道导弹空间飞行安全具有潜在的威胁,研究结果可为导弹飞行安全预警和导弹发射窗口选择提供一些借鉴.  相似文献   

7.
以现有的空间碎片环境模型为基础,建立了一套空间碎片风险评估模型。该模型包括空间碎片环境、航天器有限元建模、几何遮挡处理以及碰撞概率计算四个模块。为了验证风险评估模型的精度及有效性,针对机构间空间碎片协调委员会指定的三种标准工况,将该计算结果与国内外已有的风险评估模型的计算结果进行比较,验证了风险评估模型的正确性。利用开发的风险评估模型,对立方体航天器遭遇空间碎片碰撞风险进行仿真评估与分析,给出了轨道高度、倾角以及航天器自身的姿态参数对航天器遭遇空间碎片碰撞风险的影响特性。  相似文献   

8.
针对空间碎片数及分布,根据远程导弹飞行散布统计规律,提出一种统计导弹飞行管道内碎片数目的方法,即利用空间碎片模型数据,求出部分区域碎片数目密度随高度变化关系,构造导弹空间飞行管道,将数目密度函数在导弹飞行管道内积分,从而得到管道内碎片数目的期望值,量化评估了导弹与空间碎片的碰撞风险。仿真结果表明,远程导弹与空间碎片的撞击风险数量级为10-7,而飞行管道内碎片数目数量级为10-2,表明空间碎片已威胁到远程导弹的安全飞行。  相似文献   

9.
摘 要:针对空间碎片数及分布,根据远程导弹飞行散布统计规律,提出一种统计导弹飞行管道内碎片数目的方法,即利用空间碎片模型数据,求出部分区域碎片数目密度随高度变化关系,构造导弹空间飞行管道,将数目密度函数在导弹飞行管道内积分,从而得到管道内碎片数目的期望值,量化评估了导弹与空间碎片的碰撞风险。仿真结果表明,远程导弹与空间碎片的撞击风险数量级为10-7,而飞行管道内碎片数目数量级为10-2,表明空间碎片已威胁到远程导弹的安全飞行。  相似文献   

10.
随着高空探测火箭探测高度的提升,GPS导航系统无法满足其在3 000 km以上的定位需求,且通常应用于卫星精密定轨的传统统计定轨理论也难以实现。从高空探测火箭快速实时定位解算需求出发,针对地基导航、箭上自主解算实时定位方式,结合导航系统误差模型和轨道动力学特性,提出了一种实时高精度定位解算的方法。采用试验数据和误差辨识,完善地基导航系统误差模型,建立动力学卡尔曼滤波算法方程对定位数据进行滤波,实现快速实时高精度定轨。该方法省去了轨道积分过程,提高定位精度和解算效率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号