首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper we deal with the d‐dimensional vector packing problem, which is a generalization of the classical bin packing problem in which each item has d distinct weights and each bin has d corresponding capacities. We address the case in which the vectors of weights associated with the items are totally ordered, i.e., given any two weight vectors ai, aj, either ai is componentwise not smaller than aj or aj is componentwise not smaller than ai. An asymptotic polynomial‐time approximation scheme is constructed for this case. As a corollary, we also obtain such a scheme for the bin packing problem with cardinality constraint, whose existence was an open question to the best of our knowledge. We also extend the result to instances with constant Dilworth number, i.e., instances where the set of items can be partitioned into a constant number of totally ordered subsets. We use ideas from classical and recent approximation schemes for related problems, as well as a nontrivial procedure to round an LP solution associated with the packing of the small items. © 2002 Wiley Periodicals, Inc. Naval Research Logistics, 2003  相似文献   

2.
The effectiveness of Johnson's Approximate Method (JAM) for the 3 × n job shop scheduling problems was examined on 1,500 test cases with n ranging from 6 to 50 and with the processing times Ai, Bi, Ci (for item i on machines A, B, C) being uniformly and normally distributed. JAM proved to be quite effective for the case Bi ? max (Ai, Ci) and optimal for Bi, ? min (Ai, Ci).  相似文献   

3.
We consider a two‐phase service queueing system with batch Poisson arrivals and server vacations denoted by MX/G1G2/1. The first phase service is an exhaustive or a gated bulk service, and the second phase is given individually to the members of a batch. By a reduction to an MX/G/1 vacation system and applying the level‐crossing method to a workload process with two types of vacations, we obtain the Laplace–Stieltjes transform of the sojourn time distribution in the MX/G1G2/1 with single or multiple vacations. The decomposition expression is derived for the Laplace–Stieltjes transform of the sojourn time distribution, and the first two moments of the sojourn time are provided. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   

4.
Suppose one object is hidden in the k-th of n boxes with probability p(k). The boxes are to be searched sequentially. Associated with the j-th search of box k is a cost c(j,k) and a conditional probability q(j,k) that the first j - 1 searches of box k are unsuccessful while the j-th search is successful given that the object is hidden in box k. The problem is to maximize the probability that we find the object if we are not allowed to offer more than L for the search. We prove the existence of an optimal allocation of the search effort L and state an algorithm for the construction of an optimal allocation. Finally, we discuss some problems concerning the complexity of our problem.  相似文献   

5.
For nonnegative integers d1, d2, and L(d1, d2)‐labeling of a graph G, is a function f : V(G) → {0, 1, 2, …} such that |f(u) − f(v)| ≥ di whenever the distance between u and v is i in G, for i = 1, 2. The L(d1, d2)‐number of G, λ(G) is the smallest k such that there exists an L(d1, d2)‐labeling with the largest label k. These labelings have an application to a computer code assignment problem. The task is to assign integer “control codes” to a network of computer stations with distance restrictions, which allow d1d2. In this article, we will study the labelings with (d1, d2) ∈ {(0, 1), (1, 1), (1, 2)}. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2005  相似文献   

6.
This paper is concerned with estimating p = P(X1 < Y …, Xn < Y) or q =P (X < Y1, …, X < Yn) where the X's and Y's are all independent random variables. Applications to estimation of the reliability p from stress-strength relationships are considered where a component is subject to several stresses X1, X2, …, XN whereas its strength, Y, is a single random variable. Similarly, the reliability q is of interest where a component is made of several parts all with their individual strengths Y1, Y2 …, YN and a single stress X is applied to the component. When the X's and Y's are independent and normal, maximum likelihood estimates of p and q have been obtained. For the case N = 2 and in some special cases, minimum variance unbiased estimates have been given. When the Y's are all exponential and the X is normal with known variance, but unknown mean (or uniform between 0 and θ, θ being unknown) the minimum variance unbiased estimate of q is established in this paper.  相似文献   

7.
We study a class of new scheduling problems which involve types of teamwork tasks. Each teamwork task consists of several components, and requires a team of processors to complete, with each team member to process a particular component of the task. Once the processor completes its work on the task, it will be available immediately to work on the next task regardless of whether the other components of the last task have been completed or not. Thus, the processors in a team neither have to start, nor have to finish, at the same time as they process a task. A task is completed only when all of its components have been processed. The problem is to find an optimal schedule to process all tasks, under a given objective measure. We consider both deterministic and stochastic models. For the deterministic model, we find that the optimal schedule exhibits the pattern that all processors must adopt the same sequence to process the tasks, even under a general objective function GC = F(f1(C1), f2(C2), … , fn(Cn)), where fi(Ci) is a general, nondecreasing function of the completion time Ci of task i. We show that the optimal sequence to minimize the maximum cost MC = max fi(Ci) can be derived by a simple rule if there exists an order f1(t) ≤ … ≤ fn(t) for all t between the functions {fi(t)}. We further show that the optimal sequence to minimize the total cost TC = ∑ fi(Ci) can be constructed by a dynamic programming algorithm. For the stochastic model, we study three optimization criteria: (A) almost sure minimization; (B) stochastic ordering; and (C) expected cost minimization. For criterion (A), we show that the results for the corresponding deterministic model can be easily generalized. However, stochastic problems with criteria (B) and (C) become quite difficult. Conditions under which the optimal solutions can be found for these two criteria are derived. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004  相似文献   

8.
We present some results for M/M/1 queues with finite capacities with delayed feedback. The delay in the feedback to an M/M/1 queue is modelled as another M-server queue with a finite capacity. The steady state probabilities for the two dimensional Markov process {N(t), M(t)} are solved when N(t) = queue length at server 1 at t and M(t) = queue length at server 2 at t. It is shown that a matrix operation can be performed to obtain the steady state probabilities. The eigenvalues of the operator and its eigenvectors are found. The problem is solved by fitting boundary conditions to the general solution and by normalizing. A sample problem is run to show that the solution methods can be programmed and meaningful results obtained numerically.  相似文献   

9.
This article describes a new procedure for estimating parameters of a stochastic activity network of N arcs. The parameters include the probability that path m is the longest path, the probability that path m is the shortest path, the probability that arc i is on the longest path, and the probability that arc i is on the shortest path. The proposed procedure uses quasirandom points together with information on a cutset ? of the network to produce an upper bound of O[(log K)N?|?|+1/K] on the absolute error of approximation, where K denotes the number of replications. This is a deterministic bound and is more favorable than the convergence rate of 1/K1/2 that one obtains from the standard error for K independent replications using random sampling. It is also shown how series reduction can improve the convergence rate by reducing the exponent on log K. The technique is illustrated using a Monte Carlo sampling experiment for a network of 16 relevant arcs with a cutset of ? = 7 arcs. The illustration shows the superior performance of using quasirandom points with a cutset (plan A) and the even better performance of using quasirandom points with the cutset together with series reduction (plan B) with regard to mean square error. However, it also shows that computation time considerations favor plan A when K is small and plan B when K is large.  相似文献   

10.
We consider the transportation problem of determining nonnegative shipments from a set of m warehouses with given availabilities to a set of n markets with given requirements. Three objectives are defined for each solution: (i) total cost, TC, (ii) bottleneck time, BT (i.e., maximum transportation time for a positive shipment), and (iii) bottleneck shipment, SB (i.e., total shipment over routes with bottleneck time). An algorithm is given for determining all efficient (pareto-optimal or nondominated) (TC, BT) solution pairs. The special case of this algorithm when all the unit cost coefficients are zero is shown to be the same as the algorithms for minimizing BT. provided by Szwarc and Hammer. This algorithm for minimizing BT is shown to be computationally superior. Transportation or assignment problems with m=n=100 average about a second on the UNIVAC 1108 computer (FORTRAN V)) to the threshold algorithm for minimizing BT. The algorithm is then extended to provide not only all the efficient (TC, BT) solution pairs but also, for each such BT, all the efficient (TC, SB) solution pairs. The algorithms are based on the cost operator theory of parametric programming for the transportation problem developed by the authors.  相似文献   

11.
For each n., X1(n), X2(n), …, Xn(n) are IID, with common pdf fn(x). y1(n) < … < Yn (n) are the ordered values of X1 (n), …, Xn(n). Kn is a positive integer, with lim Kn = ∞. Under certain conditions on Kn and fn (x), it was shown in an earlier paper that the joint distribution of a special set of Kn + 1 of the variables Y1 (n), …, Yn (n) can be assumed to be normal for all asymptotic probability calculations. In another paper, it was shown that if fn (x) approaches the pdf which is uniform over (0, 1) at a certain rate as n increases, then the conditional distribution of the order statistics not in the special set can be assumed to be uniform for all asymptotic probability calculations. The present paper shows that even if fn (x) does not approach the uniform distribution as n increases, the distribution of the order statistics contained between order statistics in the special set can be assumed to be the distribution of a quadratic function of uniform random variables, for all asymptotic probability calculations. Applications to statistical inference are given.  相似文献   

12.
This paper develops a methodology for optimizing operation of a multipurpose reservoir with a finite capacity V. The input of water into the reservoir is a Wiener process with positive drift. There are n purposes for which water is demanded. Water may be released from the reservoir at any rate, and the release rate can be increased or decreased instantaneously with zero cost. In addition to the reservoir, a supplementary source of water can supply an unlimited amount of water demanded during any period of time. There is a cost of Ci dollars per unit of demand supplied by the supplementary source to the ith purpose (i = 1, 2, …, n). At any time, the demand rate Ri associated with the ith purpose (i = 1, 2, …, n) must be supplied. A controller must continually decide the amount of water to be supplied by the reservoir for each purpose, while the remaining demand will be supplied through the supplementary source with the appropriate costs. We consider the problem of specifying an output policy which minimizes the long run average cost per unit time.  相似文献   

13.
A dynamic version of the transportation (Hitchcock) problem occurs when there are demands at each of n sinks for T periods which can be fulfilled by shipments from m sources. A requirement in period t2 can be satisfied by a shipment in the same period (a linear shipping cost is incurred) or by a shipment in period t1 < t2 (in addition to the linear shipping cost a linear inventory cost is incurred for every period in which the commodity is stored). A well known method for solving this problem is to transform it into an equivalent single period transportation problem with mT sources and nT sinks. Our approach treats the model as a transshipment problem consisting of T, m source — n sink transportation problems linked together by inventory variables. Storage requirements are proportional to T2 for the single period equivalent transportation algorithm, proportional to T, for our algorithm without decomposition, and independent of T for our algorithm with decomposition. This storage saving feature enables much larger problems to be solved than were previously possible. Futhermore, we can easily incorporate upper bounds on inventories. This is not possible in the single period transportation equivalent.  相似文献   

14.
Consider a network G(N. A) with n nodes, where node 1 designates its source node and node n designates its sink node. The cuts (Zi, =), i= 1…, n - 1 are called one-node cuts if 1 ? Zi,. n q Zi, Z1-? {1}, Zi ? Zi+1 and Zi and Zi+l differ by only one node. It is shown that these one-node cuts decompose G into 1 m n/2 subnetworks with known minimal cuts. Under certain circumstances, the proposed one-node decomposition can produce a minimal cut for G in 0(n2 ) machine operations. It is also shown that, under certain conditions, one-node cuts produce no decomposition. An alternative procedure is also introduced to overcome this situation. It is shown that this alternative procedure has the computational complexity of 0(n3).  相似文献   

15.
To location Li we are to allocate a “generator” and ni “machines” for i = 1, …,k, where n1n1 ≧ … ≧ nk. Although the generators and machines function independently of one another, a machine is operable only if it and the generator at its location are functioning. The problem we consider is that of finding the arrangement or allocation optimizing the number of operable machines. We show that if the objective is to maximize the expected number of operable machines at some future time, then it is best to allocate the best generator and the n1 best machines to location L1, the second-best generator and the n2-next-best machines to location L2, etc. However, this arrangement is not always stochastically optimal. For the case of two generators we give a necessary and sufficient condition that this arrangement is stochastically best, and illustrate the result with several examples.  相似文献   

16.
The discounted return associated with a finite state Markov chain X1, X2… is given by g(X1)+ αg(X2) + α2g(X3) + …, where g(x) represents the immediate return from state x. Knowing the transition matrix of the chain, it is desired to compute the expected discounted return (present worth) given the initial state. This type of problem arises in inventory theory, dynamic programming, and elsewhere. Usually the solution is approximated by solving the system of linear equations characterizing the expected return. These equations can be solved by a variety of well-known methods. This paper describes yet another method, which is a slight modification of the classical iterative scheme. The method gives sequences of upper and lower bounds which converge mono-tonely to the solution. Hence, the method is relatively free of error control problems. Computational experiments were conducted which suggest that for problems with a large number of states, the method is quite efficient. The amount of computation required to obtain the solution increases much slower with an increase in the number of states, N, than with the conventional methods. In fact, computational time is more nearly proportional to N2, than to N3.  相似文献   

17.
This paper deals with a two searchers game and it investigates the problem of how the possibility of finding a hidden object simultaneously by players influences their behavior. Namely, we consider the following two‐sided allocation non‐zero‐sum game on an integer interval [1,n]. Two teams (Player 1 and 2) want to find an immobile object (say, a treasure) hidden at one of n points. Each point i ∈ [1,n] is characterized by a detection parameter λi (μi) for Player 1 (Player 2) such that pi(1 ? exp(?λixi)) (pi(1 ? exp(?μiyi))) is the probability that Player 1 (Player 2) discovers the hidden object with amount of search effort xi (yi) applied at point i where pi ∈ (0,1) is the probability that the object is hidden at point i. Player 1 (Player 2) undertakes the search by allocating the total amount of effort X(Y). The payoff for Player 1 (Player 2) is 1 if he detects the object but his opponent does not. If both players detect the object they can share it proportionally and even can pay some share to an umpire who takes care that the players do not cheat each other, namely Player 1 gets q1 and Player 2 gets q2 where q1 + q2 ≤ 1. The Nash equilibrium of this game is found and numerical examples are given. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   

18.
This paper proposes a new model that generalizes the linear consecutive k‐out‐of‐r‐from‐n:F system to multistate case with multiple failure criteria. In this model (named linear multistate multiple sliding window system) the system consists of n linearly ordered multistate elements (MEs). Each ME can have different states: from complete failure up to perfect functioning. A performance rate is associated with each state. Several functions are defined for a set of integer numbers ρ in such a way that for each r ∈ ρ corresponding function fr produces negative values if the combination of performance rates of r consecutive MEs corresponds to the unacceptable state of the system. The system fails if at least one of functions fr for any r consecutive MEs for r ∈ ρ produces a negative value. An algorithm for system reliability evaluation is suggested which is based on an extended universal moment generating function. Examples of system reliability evaluation are presented. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005.  相似文献   

19.
Consider an N‐item, periodic review, infinite‐horizon, undiscounted, inventory model with stochastic demands, proportional holding and shortage costs, and full backlogging. For 1 ≤ jN, orders for item j can arrive in every period, and the cost of receiving them is negligible (as in a JIT setting). Every Tj periods, one reviews the current stock level of item j and decides on deliveries for each of the next Tj periods, thus incurring an item‐by‐item fixed cost kj. There is also a joint fixed cost whenever any item is reviewed. The problem is to find review periods T1, T2, …, TN and an ordering policy satisfying the average cost criterion. The current article builds on earlier results for the single‐item case. We prove an optimal policy exists, give conditions where it has a simple form, and develop a branch and bound algorithm for its computation. We also provide two heuristic policies with O(N) computational requirements. Computational experiments indicate that the branch and bound algorithm can handle normal demand problems with N ≤ 10 and that both heuristics do well for a wide variety of problems with N ranging from 2 to 200; moreover, the performance of our heuristics seems insensitive to N. © 2001 John Wiley & Sons, Inc. Naval Research Logistics 48:430–449, 2001  相似文献   

20.
There has been much research on the general failure model recently. In the general failure model, when the unit fails at its age t, Type I failure (minor failure) occurs with probability 1 ? p(t) and Type II failure (catastrophic failure) occurs with probability p(t). In the previous research, some specific shapes (constant, non‐decreasing, or bathtub‐shape) on the probability function p(t) are assumed. In this article, general results on some probability functions are obtained and applied to study the shapes of p(t). The results are also applied to determining the optimal inspection and allocation policies in maintenance problems. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号