首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Let X1 < X2 <… < Xn denote an ordered sample of size n from a Weibull population with cdf F(x) = 1 - exp (?xp), x > 0. Formulae for computing Cov (Xi, Xj) are well known, but they are difficult to use in practice. A simple approximation to Cov(Xi, Xj) is presented here, and its accuracy is discussed.  相似文献   

2.
In a caching game introduced by Alpern et al. (Alpern et al., Lecture notes in computer science (2010) 220–233) a Hider who can dig to a total fixed depth normalized to 1 buries a fixed number of objects among n discrete locations. A Searcher who can dig to a total depth of h searches the locations with the aim of finding all of the hidden objects. If he does so, he wins, otherwise the Hider wins. This zero‐sum game is complicated to analyze even for small values of its parameters, and for the case of 2 hidden objects has been completely solved only when the game is played in up to 3 locations. For some values of h the solution of the game with 2 objects hidden in 4 locations is known, but the solution in the remaining cases was an open question recently highlighted by Fokkink et al. (Fokkink et al., Search theory: A game theoretic perspective (2014) 85–104). Here we solve the remaining cases of the game with 2 objects hidden in 4 locations. We also give some more general results for the game, in particular using a geometrical argument to show that when there are 2 objects hidden in n locations and n→∞, the value of the game is asymptotically equal to h/n for hn/2. © 2016 Wiley Periodicals, Inc. Naval Research Logistics 63: 23–31, 2016  相似文献   

3.
Suppose one object is hidden in the k-th of n boxes with probability p(k). The boxes are to be searched sequentially. Associated with the j-th search of box k is a cost c(j,k) and a conditional probability q(j,k) that the first j - 1 searches of box k are unsuccessful while the j-th search is successful given that the object is hidden in box k. The problem is to maximize the probability that we find the object if we are not allowed to offer more than L for the search. We prove the existence of an optimal allocation of the search effort L and state an algorithm for the construction of an optimal allocation. Finally, we discuss some problems concerning the complexity of our problem.  相似文献   

4.
Consider a k-out-of-n system with independent repairable components. Assume that the repair and failure distributions are exponential with parameters {μ1, ?,μn} and {λ1, ?,λn}, respectively. In this article we show that if λi – μi = Δ for all i then the life distribution of the system is increasing failure rate (IFR).  相似文献   

5.
It is often assumed in the facility location literature that functions of the type øi(xi, y) = βi[(xi-x)2+(yi-y)2]K/2 are twice differentiable. Here we point out that this is true only for certain values of K. Convexity proofs that are independent of the value of K are given.  相似文献   

6.
We have asymptotically solved a discrete search game on an array of n ordered cells with two players: infiltrator (hider) and searcher, when the probability of survival approaches 1. The infiltrator wishes to reach the last cell in finite time, and the searcher has to defend that cell. When the players occupy the same cell, the searcher captures the infiltrator with probability 1 ? z. The payoff to the hider is the probability that the hider reaches the last cell without getting captured. © 2002 John Wiley & Sons, Inc. Naval Research Logistics, 49: 1–14, 2002; DOI 10.1002/nav.1047  相似文献   

7.
For nonnegative integers d1, d2, and L(d1, d2)‐labeling of a graph G, is a function f : V(G) → {0, 1, 2, …} such that |f(u) − f(v)| ≥ di whenever the distance between u and v is i in G, for i = 1, 2. The L(d1, d2)‐number of G, λ(G) is the smallest k such that there exists an L(d1, d2)‐labeling with the largest label k. These labelings have an application to a computer code assignment problem. The task is to assign integer “control codes” to a network of computer stations with distance restrictions, which allow d1d2. In this article, we will study the labelings with (d1, d2) ∈ {(0, 1), (1, 1), (1, 2)}. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2005  相似文献   

8.
An inductive procedure is given for finding the nucleolus of an n-person game in which all coalitions with less than n-1 players are totally defeated. It is shown that, for such a game, one of three things may occur: (a) all players receive the same amount; (b) each player receives his quota, plus a certain constant (which may be positive, nerative, or zero); (c) the weakest player receives one half his quota, and the other players divide the remaining profit according to the nucleolus of a similar (n-1)-person game. It is also shown that the nucleolus of such a game yields directly the nucleolus of each derived game. An example is worked out in detail.  相似文献   

9.
Suppose that observations from populations π1, …, πk (k ≥ 1) are normally distributed with unknown means μ1., μk, respectively, and a common known variance σ2. Let μ[1] μ … ≤ μ[k] denote the ranked means. We take n independent observations from each population, denote the sample mean of the n observation from π1 by X i (i = 1, …, k), and define the ranked sample means X [1] ≤ … ≤ X [k]. The problem of confidence interval estimation of μ(1), …,μ[k] is stated and related to previous work (Section 1). The following results are obtained (Section 2). For i = 1, …, k and any γ(0 < γ < 1) an upper confidence interval for μ[i] with minimal probability of coverage γ is (? ∞, X [i]+ h) with h = (σ/n1/2) Φ?11/k-i+1), where Φ(·) is the standard normal cdf. A lower confidence interval for μ[i] with minimal probability of coverage γ is (X i[i]g, + ∞) with g = (σ/n1/2) Φ?11/i). For the upper confidence interval on μ[i] the maximal probability of coverage is 1– [1 – γ1/k-i+1]i, while for the lower confidence interval on μ[i] the maximal probability of coverage is 1–[1– γ1/i] k-i+1. Thus the maximal overprotection can always be calculated. The overprotection is tabled for k = 2, 3. These results extend to certain translation parameter families. It is proven that, under a bounded completeness condition, a monotone upper confidence interval h(X 1, …, X k) for μ[i] with probability of coverage γ(0 < γ < 1) for all μ = (μ[1], …,μ[k]), does not exist.  相似文献   

10.
We study a class of new scheduling problems which involve types of teamwork tasks. Each teamwork task consists of several components, and requires a team of processors to complete, with each team member to process a particular component of the task. Once the processor completes its work on the task, it will be available immediately to work on the next task regardless of whether the other components of the last task have been completed or not. Thus, the processors in a team neither have to start, nor have to finish, at the same time as they process a task. A task is completed only when all of its components have been processed. The problem is to find an optimal schedule to process all tasks, under a given objective measure. We consider both deterministic and stochastic models. For the deterministic model, we find that the optimal schedule exhibits the pattern that all processors must adopt the same sequence to process the tasks, even under a general objective function GC = F(f1(C1), f2(C2), … , fn(Cn)), where fi(Ci) is a general, nondecreasing function of the completion time Ci of task i. We show that the optimal sequence to minimize the maximum cost MC = max fi(Ci) can be derived by a simple rule if there exists an order f1(t) ≤ … ≤ fn(t) for all t between the functions {fi(t)}. We further show that the optimal sequence to minimize the total cost TC = ∑ fi(Ci) can be constructed by a dynamic programming algorithm. For the stochastic model, we study three optimization criteria: (A) almost sure minimization; (B) stochastic ordering; and (C) expected cost minimization. For criterion (A), we show that the results for the corresponding deterministic model can be easily generalized. However, stochastic problems with criteria (B) and (C) become quite difficult. Conditions under which the optimal solutions can be found for these two criteria are derived. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004  相似文献   

11.
Consider an auction in which increasing bids are made in sequence on an object whose value θ is known to each bidder. Suppose n bids are received, and the distribution of each bid is conditionally uniform. More specifically, suppose the first bid X1 is uniformly distributed on [0, θ], and the ith bid is uniformly distributed on [Xi?1, θ] for i = 2, …?, n. A scenario in which this auction model is appropriate is described. We assume that the value θ is un known to the statistician and must be esimated from the sample X1, X2, …?, Xn. The best linear unbiased estimate of θ is derived. The invariance of the estimation problem under scale transformations in noted, and the best invariant estimation problem under scale transformations is noted, and the best invariant estimate of θ under loss L(θ, a) = [(a/θ) ? 1]2 is derived. It is shown that this best invariant estimate has uniformly smaller mean-squared error than the best linear unbiased estimate, and the ratio of the mean-squared errors is estimated from simulation experiments. A Bayesian formulation of the estimation problem is also considered, and a class of Bayes estimates is explicitly derived.  相似文献   

12.
For each n, X1(n),…, Xn(n) are independent and identically distributed random variables, each with cumulative distribution function F(x) which is known to be absolutely continuous but is otherwise unknown. The problem is to test the hypothesis that \documentclass{article}\pagestyle{empty}\begin{document}$ F(x) = G\left( {{\textstyle{{x - \theta _1 } \over {\theta _2 }}}} \right) $\end{document}, where the cumulative distribution function Gx is completely specified and satisfies certain regularity conditions, and the parameters θ1, θ2 are unknown and unspecified, except that the scale parameter θ2, is positive. Y1 (n) ≦ Y2 (n) ≦ … ≦ Yn (n)are the ordered values of X1(n),…, Xn(n). A test based on a certain subset of {Yi(n)} is proposed, is shown to have asymptotically a normal distribution when the hypothesis is true, and is shown to be consistent against all alternatives satisfying a mild regularity condition.  相似文献   

13.
For each n, X1(n),…Xn(n) are independent and identically distributed random variables, with common probability density function Where c, θ, α, and r(y) are all unknown. It is shown that we can make asymptotic inferences about c, θ, and α, when r(y) satisfies mild conditions.  相似文献   

14.
This study is concerned with a game model involving repeated play of a matrix game with unknown entries; it is a two-person, zero-sum, infinite game of perfect recall. The entries of the matrix ((pij)) are selected according to a joint probability distribution known by both players and this unknown matrix is played repeatedly. If the pure strategy pair (i, j) is employed on day k, k = 1, 2, …, the maximizing player receives a discounted income of βk - 1 Xij, where β is a constant, 0 ≤ β ? 1, and Xij assumes the value one with probability pij or the value zero with probability 1 - pij. After each trial, the players are informed of the triple (i, j, Xij) and retain this knowledge. The payoff to the maximizing player is the expected total discounted income. It is shown that a solution exists, the value being characterized as the unique solution of a functional equation and optimal strategies consisting of locally optimal play in an auxiliary matrix determined by the past history. A definition of an ?-learning strategy pair is formulated and a theorem obtained exhibiting ?-optimal strategies which are ?-learning. The asymptotic behavior of the value is obtained as the discount tends to one.  相似文献   

15.
For each n., X1(n), X2(n), …, Xn(n) are IID, with common pdf fn(x). y1(n) < … < Yn (n) are the ordered values of X1 (n), …, Xn(n). Kn is a positive integer, with lim Kn = ∞. Under certain conditions on Kn and fn (x), it was shown in an earlier paper that the joint distribution of a special set of Kn + 1 of the variables Y1 (n), …, Yn (n) can be assumed to be normal for all asymptotic probability calculations. In another paper, it was shown that if fn (x) approaches the pdf which is uniform over (0, 1) at a certain rate as n increases, then the conditional distribution of the order statistics not in the special set can be assumed to be uniform for all asymptotic probability calculations. The present paper shows that even if fn (x) does not approach the uniform distribution as n increases, the distribution of the order statistics contained between order statistics in the special set can be assumed to be the distribution of a quadratic function of uniform random variables, for all asymptotic probability calculations. Applications to statistical inference are given.  相似文献   

16.
There are given k (? 2) univariate cumulative distribution functions (c.d.f.'s) G(x; θi) indexed by a real-valued parameter θi, i=1,…, k. Assume that G(x; θi) is stochastically increasing in θi. In this paper interval estimation on the ith smallest of the θ's and related topics are studied. Applications are considered for location parameter, normal variance, binomial parameter, and Poisson parameter.  相似文献   

17.
This paper is concerned with estimating p = P(X1 < Y …, Xn < Y) or q =P (X < Y1, …, X < Yn) where the X's and Y's are all independent random variables. Applications to estimation of the reliability p from stress-strength relationships are considered where a component is subject to several stresses X1, X2, …, XN whereas its strength, Y, is a single random variable. Similarly, the reliability q is of interest where a component is made of several parts all with their individual strengths Y1, Y2 …, YN and a single stress X is applied to the component. When the X's and Y's are independent and normal, maximum likelihood estimates of p and q have been obtained. For the case N = 2 and in some special cases, minimum variance unbiased estimates have been given. When the Y's are all exponential and the X is normal with known variance, but unknown mean (or uniform between 0 and θ, θ being unknown) the minimum variance unbiased estimate of q is established in this paper.  相似文献   

18.
There are n customers that need to be served. Customer i will only wait in queue for an exponentially distributed time with rate λi before departing the system. The service time of customer i has distribution Fi, and on completion of service of customer i a positive reward ri is earned. There is a single server and the problem is to choose, after each service completion, which currently in queue customer to serve next so as to maximize the expected total return. © 2015 Wiley Periodicals, Inc. Naval Research Logistics 62: 659–663, 2015  相似文献   

19.
We present a branch and bound algorithm to solve mathematical programming problems of the form: Find x =|(x1,…xn) to minimize Σ?i0(x1) subject to x?G, l≦x≦L and Σ?i0(x1)≦0, j=1,…,m. With l=(l1,…,ln) and L=(L1,…,Ln), each ?ij is assumed to be lower aemicontinuous and piecewise convex on the finite interval [li.Li]. G is assumed to be a closed convex set. The algorithm solves a finite sequence of convex programming problems; these correspond to successive partitions of the set C={x|l ≦ x ≦L} on the bahis of the piecewise convexity of the problem functions ?ij. Computational considerations are discussed, and an illustrative example is presented.  相似文献   

20.
Consider a network G(N. A) with n nodes, where node 1 designates its source node and node n designates its sink node. The cuts (Zi, =), i= 1…, n - 1 are called one-node cuts if 1 ? Zi,. n q Zi, Z1-? {1}, Zi ? Zi+1 and Zi and Zi+l differ by only one node. It is shown that these one-node cuts decompose G into 1 m n/2 subnetworks with known minimal cuts. Under certain circumstances, the proposed one-node decomposition can produce a minimal cut for G in 0(n2 ) machine operations. It is also shown that, under certain conditions, one-node cuts produce no decomposition. An alternative procedure is also introduced to overcome this situation. It is shown that this alternative procedure has the computational complexity of 0(n3).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号