首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
This paper considers a three‐person rendezvous problem on the line which was introduced earlier by the authors. Three agents are placed at three consecutive integer value points on the real line, say 1, 2, and 3. Each agent is randomly faced towards the right or left. Agents are blind and have a maximum speed of 1. Their common aim is to gather at a common location as quickly as possible. The main result is the proof that a strategy given by V. Baston is the unique minimax strategy. Baston's strategy ensures a three way rendezvous in time at most 3.5 for any of the 3!23 = 48 possible initial configurations corresponding to positions and directions of each agent. A connection is established between the above rendezvous problem and a search problem of L. Thomas in which two parents search separately to find their lost child and then meet again. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 244–255, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/nav.10005  相似文献   

2.
We consider problem of scheduling jobs on‐line on batch processing machines with dynamic job arrivals to minimize makespan. A batch machine can handle up to B jobs simultaneously. The jobs that are processed together from a batch, and all jobs in a batch start and complete at the same time. The processing time of a batch is given by the longest processing time of any job in the batch. Each job becomes available at its arrival time, which is unknown in advance, and its processing time becomes known upon its arrival. In the first part of this paper, we address the single batch processing machine scheduling problem. First we deal with two variants: the unbounded model where B is sufficiently large and the bounded model where jobs have two distinct arrival times. For both variants, we provide on‐line algorithms with worst‐case ratio (the inverse of the Golden ratio) and prove that these results are the best possible. Furthermore, we generalize our algorithms to the general case and show a worst‐case ratio of 2. We then consider the unbounded case for parallel batch processing machine scheduling. Lower bound are given, and two on‐line algorithms are presented. © 2001 John Wiley & Sons, Inc. Naval Research Logistics 48: 241–258, 2001  相似文献   

3.
In this paper, we give an explicit relation between steady‐state probability distributions of the buffer occupancy at customer entrance and departure epochs, for the classical single‐server system G/G[N]/1 with batch services and for the finite capacity case. The method relies on level‐crossing arguments. For the particular case of Poisson input, we also express the loss probability in terms of state probabilities at departure epochs, yielding probabilities observed by arriving customers. This work provides the “bulk queue” version of a result established by Burke, who stated the equality between probabilities at arrival and departure epochs for systems with “unit jumps.” © 1999 John Wiley & Sons, Inc. Naval Research Logistics 46: 107–118, 1999  相似文献   

4.
In this paper, we study the on‐line parameter estimation problem for a partially observable system subject to deterioration and random failure. The state of the system evolves according to a continuous time homogeneous Markov process with a finite state space. The system state is not observable, except for the failure state. The information related to the system state is available at discrete times through inspections. A recursive maximum likelihood (RML) algorithm is proposed for the on‐line parameter estimation of the model. The RML algorithm proposed in the paper is considerably faster and easier to apply than other RML algorithms in the literature, because it does not require projection into the constraint domain and calculation of the gradient on the surface of the constraint manifolds. The algorithm is illustrated by an example using real vibration data. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2006  相似文献   

5.
Most papers in the scheduling field assume that a job can be processed by only one machine at a time. Namely, they use a one‐job‐on‐one‐machine model. In many industry settings, this may not be an adequate model. Motivated by human resource planning, diagnosable microprocessor systems, berth allocation, and manufacturing systems that may require several resources simultaneously to process a job, we study the problem with a one‐job‐on‐multiple‐machine model. In our model, there are several alternatives that can be used to process a job. In each alternative, several machines need to process simultaneously the job assigned. Our purpose is to select an alternative for each job and then to schedule jobs to minimize the completion time of all jobs. In this paper, we provide a pseudopolynomial algorithm to solve optimally the two‐machine problem, and a combination of a fully polynomial scheme and a heuristic to solve the three‐machine problem. We then extend the results to a general m‐machine problem. Our algorithms also provide an effective lower bounding scheme which lays the foundation for solving optimally the general m‐machine problem. Furthermore, our algorithms can also be applied to solve a special case of the three‐machine problem in pseudopolynomial time. Both pseudopolynomial algorithms (for two‐machine and three‐machine problems) are much more efficient than those in the literature. © 1999 John Wiley & Sons, Inc. Naval Research Logistics 46: 57–74, 1999  相似文献   

6.
Retrial queueing systems are widely used in teletraffic theory and computer and communication networks. Although there has been a rapid growth in the literature on retrial queueing systems, the research on retrial queues with nonexponential retrial times is very limited. This paper is concerned with the analytical treatment of an M/G/1 retrial queue with general retrial times. Our queueing model is different from most single server retrial queueing models in several respectives. First, customers who find the server busy are queued in the orbit in accordance with an FCFS (first‐come‐first‐served) discipline and only the customer at the head of the queue is allowed for access to the server. Besides, a retrial time begins (if applicable) only when the server completes a service rather upon a service attempt failure. We carry out an extensive analysis of the queue, including a necessary and sufficient condition for the system to be stable, the steady state distribution of the server state and the orbit length, the waiting time distribution, the busy period, and other related quantities. Finally, we study the joint distribution of the server state and the orbit length in non‐stationary regime. © 1999 John Wiley & Sons, Inc. Naval Research Logistics 46: 561–581, 1999  相似文献   

7.
In this paper we study the scheduling problem that considers both production and job delivery at the same time with machine availability considerations. Only one vehicle is available to deliver jobs in a fixed transportation time to a distribution center. The vehicle can load at most K jobs as a delivery batch in one shipment due to the vehicle capacity constraint. The objective is to minimize the arrival time of the last delivery batch to the distribution center. Since machines may not always be available over the production period in real life due to preventive maintenance, we incorporate machine availability into the models. Three scenarios of the problem are studied. For the problem in which the jobs are processed on a single machine and the jobs interrupted by the unavailable machine interval are resumable, we provide a polynomial algorithm to solve the problem optimally. For the problem in which the jobs are processed on a single machine and the interrupted jobs are nonresumable, we first show that the problem is NP‐hard. We then propose a heuristic with a worst‐case error bound of 1/2 and show that the bound is tight. For the problem in which the jobs are processed on either one of two parallel machines, where only one machine has an unavailable interval and the interrupted jobs are resumable, we propose a heuristic with a worst‐case error bound of 2/3. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   

8.
Consider a threshold control policy for an imperfect production system with only a work center handling both regular and rework jobs. An imperfect production system studied here, generates defect jobs by factors other than machine failures. A threshold control or (ω, s) policy sets the guideline for a work center to switch between regular and rework jobs. A production cycle begins with loading and processing of several batches of regular jobs with a lot size equal to s. The outcome of each completed regular job is an independent Bernoulli trial with three possibilities: good, rework, or scrap. Once the work center accumulates more than a threshold ω of rework jobs, it finishes the last batch of regular jobs and switches to rework jobs. The objective of this research is to find a threshold ω and a lot size s that maximize the average long‐term profit. The ultimate goal is to construct a simple algorithm to search for ω and s that can be implemented directly in production management systems, as a result of this work. © 1999 John Wiley & Sons, Inc. Naval Research Logistics 46: 273–301, 1999  相似文献   

9.
Capacity improvement and conditional penalties are two computational aides for fathoming subproblems in a branch‐and‐bound procedure. In this paper, we apply these techniques to the fixed charge transportation problem (FCTP) and show how relaxations of the FCTP subproblems can be posed as concave minimization problems (rather than LP relaxations). Using the concave relaxations, we propose a new conditional penalty and three new types of capacity improvement techniques for the FCTP. Based on computational experiments using a standard set of FCTP test problems, the new capacity improvement and penalty techniques are responsible for a three‐fold reduction in the CPU time for the branch‐and‐bound algorithm and nearly a tenfold reduction in the number of subproblems that need to be evaluated in the branch‐and‐bound enumeration tree. © 1999 John Wiley & Sons, Inc. Naval Research Logistics 46: 341–355, 1999  相似文献   

10.
We deal with the problem of minimizing makespan on a single batch processing machine. In this problem, each job has both processing time and size (capacity requirement). The batch processing machine can process a number of jobs simultaneously as long as the total size of these jobs being processed does not exceed the machine capacity. The processing time of a batch is just the processing time of the longest job in the batch. An approximation algorithm with worst‐case ratio 3/2 is given for the version where the processing times of large jobs (with sizes greater than 1/2) are not less than those of small jobs (with sizes not greater than 1/2). This result is the best possible unless P = NP. For the general case, we propose an approximation algorithm with worst‐case ratio 7/4. A number of heuristics by Uzosy are also analyzed and compared. © 2001 John Wiley & Sons, Inc. Naval Research Logistics 48: 226–240, 2001  相似文献   

11.
We consider the Capacitated Traveling Salesman Problem with Pickups and Deliveries (CTSPPD). This problem is characterized by a set of n pickup points and a set of n delivery points. A single product is available at the pickup points which must be brought to the delivery points. A vehicle of limited capacity is available to perform this task. The problem is to determine the tour the vehicle should follow so that the total distance traveled is minimized, each load at a pickup point is picked up, each delivery point receives its shipment and the vehicle capacity is not violated. We present two polynomial‐time approximation algorithms for this problem and analyze their worst‐case bounds. © 1999 John Wiley & Sons, Inc. Naval Research Logistics 46: 654–670, 1999  相似文献   

12.
Nonparametric control charts are useful in statistical process control when there is a lack of or limited knowledge about the underlying process distribution, especially when the process measurement is multivariate. This article develops a new multivariate self‐starting methodology for monitoring location parameters. It is based on adapting the multivariate spatial rank to on‐line sequential monitoring. The weighted version of the rank‐based test is used to formulate the charting statistic by incorporating the exponentially weighted moving average control scheme. It is robust to non‐normally distributed data, easy to construct, fast to compute and also very efficient in detecting multivariate process shifts, especially small or moderate shifts which occur when the process distribution is heavy‐tailed or skewed. As it avoids the need for a lengthy data‐gathering step before charting and it does not require knowledge of the underlying distribution, the proposed control chart is particularly useful in start‐up or short‐run situations. A real‐data example from white wine production processes shows that it performs quite well. © 2012 Wiley Periodicals, Inc. Naval Research Logistics 59: 91–110, 2012  相似文献   

13.
A U‐line arranges tasks around a U‐shaped production line and organizes them into stations that can cross from one side of the line to the other. In addition to improving visibility and communication between operators on the line, which facilitates problem‐solving and quality improvement, U‐lines can reduce the total number of operators required on the line and make rebalancing the line easier compared to the traditional, straight production line. This paper studies the (type 1) U‐line balancing problem when task completion times are stochastic. Stochastic completion times occur when differences between operators cause completion times to vary somewhat and when machine processing times vary. A recursive algorithm is presented for finding the optimal solution when completion times have any distribution function. An equivalent shortest path network is also presented. An improvement for the special case of normally distributed task completion times is given. A computational study to determine the characteristics of instances that can be solved by the algorithms shows that they are able to solve instances of practical size (like the 114 Japanese and U.S. U‐lines studied in a literature review paper). © 2002 Wiley Periodicals, Inc. Naval Research Logistics, 2003  相似文献   

14.
Scheduling a set of n jobs on a single machine so as to minimize the completion time variance is a well‐known NP‐hard problem. In this paper, we propose a sequence, which can be constructed in O(n log n) time, as a solution for the problem. Our primary concern is to establish the asymptotical optimality of the sequence within the framework of probabilistic analysis. Our main result is that, when the processing times are randomly and independently drawn from the same uniform distribution, the sequence is asymptotically optimal in the sense that its relative error converges to zero in probability as n increases. Other theoretical results are also derived, including: (i) When the processing times follow a symmetric structure, the problem has 2⌊(n−1)/2⌋ optimal sequences, which include our proposed sequence and other heuristic sequences suggested in the literature; and (ii) when these 2⌊(n−1)/2⌋ sequences are used as approximate solutions for a general problem, our proposed sequence yields the best approximation (in an average sense) while another sequence, which is commonly believed to be a good approximation in the literature, is interestingly the worst. © 1999 John Wiley & Sons, Inc. Naval Research Logistics 46: 373–398, 1999  相似文献   

15.
In this article, a distribution system is studied where the sum of transportation and inventory costs is to be minimized. The inventory holding cost is assumed to be the same for all retailers. A fixed partition (FP) periodic policy is proposed with tight asymptotic worst‐case performance of 3/2 with respect to the best possible policy. This bound cannot be improved in the class of FP periodic policies. In partition‐based PB policies, the retailers are first partitioned into sets and then the sets are grouped in such a way that sets of retailers within a group are served together at selected times. A PB periodic, policy is presented with tight worst‐case asymptotic performance of with respect to the best possible policy. This latter performance improves the worst‐case asymptotic performance of of the previously best known policy for this problem. We also show that the proposed PB periodic policy has the best worst‐case asymptotic performance within the class of PB policies. Finally, practical heuristics inspired by the analyzed policies are designed and tested. The asymptotic worst–case performances of the heuristics are shown to be the same of those of the analyzed policies. Computational results show that the heuristics suggested are less than 6.4% on average from a lower bound on the optimal cost when 50 or more retailers are involved. © 2013 Wiley Periodicals, Inc. Naval Research Logistics 00: 000–000, 2013  相似文献   

16.
A national recycling and waste management company provides periodic services to its customers from over 160 service centers. The services are performed periodically in units of weeks over a planning horizon. The number of truck‐hours allocated to this effort is determined by the maximum weekly workload during the planning horizon. Therefore, minimizing the maximum weekly workload results in minimum operating expenses. The perfectly periodic service scheduling (PPSS) problem is defined based on the practices of the company. It is shown that the PPSS problem is strongly NP‐hard. Attempts to solve large instances by using an integer programming formulation are unsuccessful. Therefore, greedy BestFit heuristics with three different sorting schemes are designed and tested for six real‐world PPSS instances and 80 randomly generated data files. The heuristics provide effective solutions that are within 2% of optimality on average. When the best found BestFit schedules are compared with the existing schedules, it is shown that operational costs are reduced by 18% on average. © 2012 Wiley Periodicals, Inc. Naval Research Logistics 59: 160–171, 2012  相似文献   

17.
In this paper, we consider a new weapon–target allocation problem with the objective of minimizing the overall firing cost. The problem is formulated as a nonlinear integer programming model. We applied Lagrangian relaxation and a branch‐and‐bound method to the problem after transforming the nonlinear constraints into linear ones. An efficient primal heuristic is developed to find a feasible solution to the problem to facilitate the procedure. In the branch‐and‐bound method, three different branching rules are considered and the performances are evaluated. Computational results using randomly generated data are presented. © 1999 John Wiley & Sons, Inc. Naval Research Logistics 46: 640–653, 1999  相似文献   

18.
Nonparametric classes of life distributions are usually based on the pattern of aging in some sense. The common parametric families of life distributions also feature monotone aging. In this paper we consider the class of log‐concave distributions and the subclass of concave distributions. The work is motivated by the fact that most of the common parametric models of life distributions (including Weibull, Gamma, log‐normal, Pareto, and Gompertz distributions) are log‐concave, while the remaining life of maintained and old units tend to have a concave distribution. The classes of concave and log‐concave distributions do not feature monotone aging. Nevertheless, these two classes are shown to have several interesting and useful properties. We examine the closure of these classes under a number of reliability operations, and provide sharp reliability bounds for nonmaintained and maintained units having life distribution belonging to these classes. © 1999 John Wiley & Sons, Inc. Naval Research Logistics 46: 419–433, 1999  相似文献   

19.
Following two failed attacks on the Ottoman defence line in Gaza in the first part of 1917, the Egyptian Expeditionary Force successfully broke through the enemy eastern flank at Beersheba in October 1917 and occupied South Palestine. Traditional historiography has placed the shift of the British focus from the coast to the east immediately after the failure of Second Gaza, in April 1917. This article argues that the tentative idea of turning east matured into a solid operational concept only after, and as a result of, a successful mounted raid on the Ottoman Beersheba‐'Awja railway in May. A minor operation, aimed at achieving tactical gain, recovering personal prestige and placating an activist War Cabinet, the railway raid unintentionally affected the entire Palestine Campaign.  相似文献   

20.

The original Olson and Zeckhauser model of alliance burden‐sharing was based on the following four assumptions: (1) alliance defence is a pure public good; (2) allied nations make their security contribution decisions without consulting the other allies; (3) alliances produce only a single public good; and (4) alliance defence is produced with equal degrees of efficiency in all alliance nations. But while the first of these assumptions has received a great deal of attention in the alliance literature, the remaining ones have received comparatively less attention, particularly in terms of empirical analyses. This paper synthesizes a varied literature developed around these four assumptions, both substantively and theoretically, and shows that when these assumptions are brought closer to real world approximations, hypotheses regarding the potential for security cooperation with less free‐riding result. This article also provides a simple test of Western alliance burden‐sharing in the areas of military spending, development resources spending, and research and development spending that supports the hypothesis positing more equitable burden‐sharing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号