首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
开孔复合材料层合板的拉伸强度和失效模式分析   总被引:1,自引:0,他引:1  
为研究纤维编织工艺、铺层角度和孔径大小对开孔复合材料层合板拉伸强度和失效模式的影响规律,选用正交平纹玻纤层合板(WFL)和单向玻纤层合板(UFL)制作0°和45°铺层开孔拉伸试件,随后进行了试验研究;采用 Abaqus 建立基于二维 Hashion 失效准则的渐进损伤仿真模型,并对试验结果进行了对比,分析了试件的损伤机理。研究结果表明:层合板强度随开孔增大而减小,并且这种变化率随孔径增大而增大,45°铺层的层合板的变化率小于0°铺层,WFL 小于 UFL;WFL 的破坏以纤维断裂为主,裂纹垂直于纤维方向,UFL 以基体开裂为主,裂纹沿纤维方向,孔径则对破坏模式无明显影响;0°铺层 WFL 的破坏是由纤维拉伸失效导致,45°的则由纤维拉伸失效和基体拉伸剪切失效共同导致,0°铺层 UFL 由基体压缩失效导致,45°的则由基体拉伸剪切失效导致;拉伸强度的仿真与试验结果最大误差为14.1%,由此验证了仿真计算方法的有效性。  相似文献   

2.
针对标准铺层拉伸-剪切耦合层合板耦合效应弱的缺点,提出利用优化法的自由铺层拉伸-剪切耦合层合板的设计方法。推导了只具有拉伸-剪切耦合效应的层合板应满足的条件。优化得到了7~14层的自由铺层拉伸-剪切耦合对称层合板。对比分析了自由与标准铺层拉伸-剪切耦合层合板的屈曲强度与稳定性。采用自由铺层拉伸-剪切耦合层合板设计了拉伸-扭转耦合结构。研究表明:自由铺层的拉伸-剪切耦合层合板的屈曲强度以及稳定性要显著弱于标准铺层层合板,但具有更强的耦合效应;随着层数的增加,自由铺层的拉伸-剪切耦合层合板的最大耦合效应逐渐减小。  相似文献   

3.
铺层方式对碳/环氧管层间剪应力影响的有限元分析   总被引:1,自引:0,他引:1       下载免费PDF全文
利用有限元程序ANSYS7.0对软模膨胀成型制备的碳/环氧管件在轴向载荷下的层间剪应力进行了分析。表明铺层的不对称性会显著导致环向层间剪应力增大,增幅在0.43~1.14倍,但对轴向层间剪应力影响很小;碳/环氧管的轴向铺层和环向铺层的比例对轴向层间剪应力和环向层间剪应力有显著影响,其比例在7∶3~4∶1时可以有效降低碳/环氧管的层间应力。  相似文献   

4.
通过模压工艺制备了酚醛-石英混织纤维增强苯并噁嗪复合材料(P-Q/BZ)试样,考察了其力学性能、烧蚀性能和耐冲刷性能,分析了该试样在高温环境中的主要失效特征,研究其在高温环境中的适用性。结果表明,未经热处理的P-Q/BZ试样平均弯曲强度、弯曲模量和层间剪切强度分别为283 MPa、10.8 GPa和22.6 MPa;经300℃,N_2处理15 min后,试样均匀膨胀,厚度增加22%,弯曲强度、弯曲模量和层间剪切强度分别下降58%、41%和58%;在氧乙炔焰的平均质量烧蚀率和线烧蚀率分别为0.048 4 g/s和-0.081 mm/s,烧蚀后试样宏观不分层,表面炭层微观分层严重,酚醛纤维热解炭、树脂基体热解炭、熔融石英纤维以及碳硅氧化产物相互分离;该试样耐冲刷能力差,在发动机尾焰烧蚀平台模拟的热-力耦合环境中的质量损失率高达59%。P-Q/BZ复合材料需要解决热解膨胀问题,进一步提高抗冲刷性能。  相似文献   

5.
采用Ansys/Ls-dyna建立了Kevlar纤维层合板的三维有限元模型,模拟了Kevlar纤维层合板的抗侵彻过程和抗弹性能,模拟结果与实验吻合较好,证明了模拟方法以及模型参数的合理性.在此基础上讨论了靶板的抗弹机理以及破坏方式,分析得到了随着靶板厚度的变化,抗弹性能会出现一个拐点,靶板破坏方式会发生变化,而在拐点之...  相似文献   

6.
为研究分层缺陷对复合材料夹层结构承载特性的影响,对含面芯分层缺陷的复合材料夹芯梁开展了系列轴向压缩试验,采用高速摄影仪记录结构的变形形态及破坏过程,对结构出现的欧拉屈曲、剪切屈曲、局部面板褶皱、纤维压缩破坏等失效模式进行分析,并探讨了梁长度、表层厚度、芯层厚度、缺陷尺寸等参数对结构承载特性的影响。试验结果表明:表层厚度对结构的失效模式及承载能力有着直接影响;对于贯穿型矩形缺陷,当缺陷因子μ≥0.05时,结构发生局部屈曲失效;局部屈曲为非稳态失效,当面板出现局部褶皱后,面芯分层缺陷迅速沿轴向向两端扩展,扩展路径可由面芯界面层进入芯层,造成芯层的剪切破坏。  相似文献   

7.
粘-弹层合板的阻尼振动和横向应力   总被引:8,自引:3,他引:5  
应用混合分层理论在板的厚度方向取二次插值函数描述每个数值层内位移沿厚度方向的变化规律,采用三次和四次插值函数描述横向应力沿厚度方向的变化,推导出粘-弹层合板的动力学方程,并得出简支粘-弹层合板自由阻尼振动的解.数值结果不仅与三维结果吻合较好,且能够计算合理协调的横向应力.  相似文献   

8.
根据层合板理论,首先利用三维应力、应变转换关系,推导出复合材料帽型加筋层合梁的总体刚度矩阵公式,建立了复合材料帽型加筋层合梁的拉伸刚度和弯曲刚度理论计算式;然后,计算了轴向或横向荷载作用下,复合材料帽型加筋悬臂层合梁的拉伸和弯曲变形,并和ANSYS有限元计算结果进行了对比;最后,计算分析了腹板倾斜角度对结构刚度的影响。计算结果表明:腹板倾斜角度为60°时,帽型加筋结构的刚度和所需材料的比值达到最优值;拉伸和弯曲刚度的理论解和ANSYS有限元计算结果吻合较好,说明上述方法以及推导的计算公式是准确、可靠的。  相似文献   

9.
弹道冲击下层合板破坏模式及抗弹性能实验研究   总被引:11,自引:3,他引:8  
以舰用轻型复合装甲研究为背景,针对不同纤维增强种类(包括玻纤织物 C400、C200、SW220 和芳纶纤维织物T750)以及不同面密度层合板结构,在6.2 g刚性微曲面柱形弹弹道冲击下的防护能力展开实验研究,着重讨论了层合板结构弹道冲击下破坏模式、弹体初始侵彻速度及面密度与抗弹能力和抗弹效率之间的关系,认为不同的破坏模式体现了不同的吸能特性和纤维失效机理.  相似文献   

10.
Kelvin模型阻尼层合板的振动分析   总被引:1,自引:0,他引:1  
基于Kelvin模型粘弹性材料本构关系导出了阻尼层合板的动力学微分方程组,给出了四边简支阻尼层合板的固有频率和损耗因子的解析解。与文献结果比较表明,将Kelvin模型应用于粘弹结构的动力特性问题求解,计算模型简便,且计算结果比常复数模型更为精确。分析了阻尼层参数变化对结构振动特性的影响。分析结果表明:增加阻尼层厚度,可以有效提高结构损耗因子;增加阻尼层材料的剪切模量,结构损耗因子增大到一定值后又逐渐减小,在减振设计中阻尼层的模量存在最佳值。  相似文献   

11.
主拉应力破坏是砌体结构在地震荷载作用下最常见的一种破坏形式,剪刀撑水泥砂浆网薄层加固法就是针对砌体结构抵抗主拉应力不足的一种加固方法。为了考察该方法加固砌体墙体的受力性能及加固效果,对6片砂浆强度不同、加固方法不同的墙体试件进行了拟静力试验。试验结果表明:剪刀撑水泥砂浆网薄层加固法能够明显提高砌体墙体的抗剪承载力;该方法更适合于加固砂浆强度较低的砌体墙体;采用该方法加固后的砌体墙体破坏形式以剪切滑移破坏为主;加固面层能够与原有墙体较好地共同工作。目前剪刀撑水泥砂浆网薄层加固法是一个崭新的课题,该拟静力试验给出的试验分析结果和建议可供相关研究和加固工程设计参考。  相似文献   

12.
《防务技术》2020,16(6):1089-1097
The objective of the present study is to develop cost effective thermoplastic hybrid laminate using Dyneema® HB50 and Tensylon®HSBD 30A through structural hybridization method. Laminates having 20 mm thickness were fabricated and subjected to 7.62 × 39 mm mild steel core projectile with an impact velocity of 730 ± 10 ms−1. Parameters such as energy absorption, back face deformation and rate of back face deformation were measured as a function of hybridization ratio. It was observed that hybrid laminate with 50:50 ratio (w/w) of Tensylon® and Dyneema® with Tensylon® as front face showed 200% more energy absorption when compared to 100% Tensylon® laminate and showed equal energy absorption as that of expensive 100% Dyneema® laminate. Moreover, hybrid laminate with TD50:50 ratio showed 40% lower in terms of final back face deformation than Dyneema® laminate. Rate of back face deformation was also found to be slow for hybrid laminate as compared to Dyneema® laminate. Dynamic mechanical analysis showed that, Tensylon® laminate has got higher stiffness and lower damping factor than Dyneema® and hybrid laminates. The interface between Tensylon® and Dyneema® layers was found to be separating during the penetration process due to the poor interfacial bonding. Failure behaviour of laminates for different hybridization ratios were studied by sectioning the impacted laminates. It was observed that, the Tensylon® laminate has undergone shear cutting of fibers as major failure mode whereas the hybrid laminate showed shear cutting followed by tensile stretching, fiber pull out and delamination. These inputs are highly useful for body armour applications to design cost effective armour with enhanced performance.  相似文献   

13.
《防务技术》2019,15(6):897-904
Low velocity impact experiments were carried out on E-glass/epoxy composite laminates having varying thicknesses at sub zero and elevated temperatures using hemi spherical steel impactor of 16 mm diameter with impact energies in the rage of 50–150 J. The performance of the laminates was assessed in terms of energy absorption, maximum displacement, peak force and failure behaviour. Results indicated that the effect of temperature on energy absorption of the laminate is negligible although the laminates are embrittling at sub zero temperatures. However it has influence on failure behaviour and displacement. Peak force has increased linearly with increase in laminate thickness from 5 to 10 mm. However it got reduced by 25% when temperature was increased from −20 °C to 100 °C. Based on experimental results, laminate perforation energies were predicted using curve fitting equations. Statistical analysis was carried out using Taguchi method to identify the global effects of various parameters on laminate performance and confirmed that the laminate thickness has significant influence as compared to temperature, for the studied range.  相似文献   

14.
爆炸复合接头剪切强度测试方法研究   总被引:2,自引:0,他引:2  
参照正交各向异性层压复合板层间剪切强度的测试方法,提出了用于测试爆炸复合接头复合界面剪切强度的3种方法;并建立三维有限元模型,分别对3种测试方法进行模拟;最后分别对3种方法进行了测试试验.结果表明,3种试验方法均能有效测试爆炸复合接头的剪切强度,其中对称试件双切口拉伸法最适合实际应用.  相似文献   

15.
Cross-ply unidirectional laminates made of ultra-high molecular weight polyethylene fibers are widely used as components of bullet-proof vests. To simulate the delamination process of the material under penetration, we constructed a numerical mechanical model, which was validated by tests using 7.62 × 39 mm rifle bullets penetrating laminates of different thicknesses. The results show that the delamination region is essentially diamond-shaped. The simulated delamination region is in good agreement with the experimental data. It is found that the delamination region increases with the compression modulus along the fiber direction. The delamination region increases when the shear strength between the fabric layers decreases;However, it is little influenced by the normal strength. The delamination region of the front face of the laminate is little influenced by the failure strain of the material and the initial velocity of the bullet. The delamination region of the back face increases with the failure strain and decreases with the initial velocity.  相似文献   

16.
考虑抗拉强度的含外倾结构面岩质边坡稳定性分析   总被引:1,自引:0,他引:1  
当前工程设计都是将边坡失稳破坏看成整体的剪切破坏即M-C剪切破坏,基本不考虑岩土体本身抗拉强度.而岩质边坡真实的破坏应该是张拉-剪切复合破坏,不应是传统不考虑抗拉强度的单一剪切破坏模式.利用FLAC3D软件,基于张拉-剪切复合破坏准则对岩体和结构面强度参数同时进行强度折减,与只考虑抗剪强度的情况进行比较来研究抗拉强度对...  相似文献   

17.
《防务技术》2022,18(10):1822-1833
High-performance ballistic fibers, such as aramid fiber and ultra-high-molecular-weight polyethylene (UHMWPE), are commonly used in anti-ballistic structures due to their low density, high tensile strength and high specific modulus. However, their low modulus in the thickness direction and insufficient shear strength limits their application in certain ballistic structure. In contrast, carbon fiber reinforced epoxy resin matrix composites (CFRP) have the characteristics of high modulus in the thickness direction and high shear resistance. However, carbon fibers are rarely used and applied for protection purposes. A hybridization with aramid fiber reinforced epoxy resin matrix composites (AFRP) and CFRP has the potential to improve the stiffness and the ballistic property of the typical ballistic fiber composites. The hybrid effects on the flexural property and ballistic performance of the hybrid CFRP/AFRP laminates were investigated. Through conducting mechanical property tests and ballistic tests, two sets of reliable simulation parameters for AFRP and CFRP were established using LS-DYNA software, respectively. The experimental results suggested that by increasing the content of CFRP that the flexural properties of hybrid CFRP/AFRP laminates were enhanced. The ballistic tests’ results and the simulation illustrated that the specific energy absorption by the perforation method of CFRP achieved 77.7% of AFRP. When CFRP was on the striking face, the shear resistance of the laminates and the resistance force to the projectiles was promoted at the initial penetration stage. The proportion of fiber tensile failures in the AFRP layers was also enhanced with the addition of CFRP during the penetration process. These improvements resulted in the ballistic performance of hybrid CFRP/AFRP laminates was better than AFRP when the CFRP content was 20 wt% and 30 wt%.  相似文献   

18.
有限元强度折减法研究进展   总被引:84,自引:7,他引:77  
介绍笔者近年来在有限元强度折减法分析边坡稳定性方面的一些进展,主要包括有限元中边坡破坏的判据,屈服准则的影响和选用,有限元强度折减法在土坡与岩坡中的应用,有限元强度折减法在支挡结构与岩土介质共同作用方面的应用,最后介绍了三维有限元强度折减法的一些研究进展。通过这些工作,使有限元强度折减法的计算精度得到很大提高,并扩大了有限元强度折减法的应用范围。  相似文献   

19.
In this study, the anti-penetration performance of polyurea/ASTM1405-steel composite plate subjected to high velocity projectile was analyzed. Two kinds of modified polyurea material (AMMT-053 and AMMT-055) were selected and a ballistic impact testing system including speed measuring target system and high-speed camera was designed. This experiment was conducted with a rifle and 5.8 mm projectile to explore the effects by the polyurea coating thickness, the polyurea coating position and the glass-fiber cloth on the anti-penetration performance of polyurea/ASTM1405-steel composite plate. The result showed that the effects of polyurea coating position were different between two types of polyurea, and that the effects of glass-fiber position were disparate between two types of polyurea as well. For AMMT-053 polyurea material, it was better to be on front face than on rear face; whereas for AMMT-055 pol-yurea, it was better to be on rear surface although the difference was very subtle. Additionally, formulas had been given to describe the relationship between the effectiveness of polyurea and the thickness of polyurea coating. In general, AMMT-055 had better anti-penetration performance than AMMT-053. Furthermore, five typical damage modes including self-healing, crack, local bulge, spallation and local fragmentation were defined and the failure mechanism was analyzed with the results of SHPB test. Additionally, the bonding strength played an important role in the anti-penetration performance of polyurea/steel composite plate.  相似文献   

20.
《防务技术》2020,16(4):787-801
The woven basalt fiber composites (WBFC) and the unidirectional [0°/90°/45°/-45°]s basalt fiber composites (UBFC) were prepared by hot-pressing. Three-point bending test, low velocity impact test, and ballistic test were performed to the prepared composites. After the tests, the specimens were recovered and analyzed for micromorphology. Three-point bending tests show that both the bending strength and stiffness of the WBFC surpass those of the UBFC. Low velocity impact test results show that the low velocity impact resistance to hemispherical impactor of the UBFC is higher than that of the WBFC, but the low velocity impact resistance to sharp impactor of the UBFC is lower than that of the WBFC. For the ballistic test, it can be found that the ballistic property of the UBFC is higher than that of the WBFC. After the tests, microscopic analysis of the specimens was applied, and their failure mechanism was discussed. The main failure modes of the UBFC are delamination and fibers breakage under the above loading conditions while the main failure mode of the WBFC is fibers breakage. Although delamination damage can be found in the WBFC under the above loading conditions, the degree of delamination is far less than that of the UBFC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号