首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 970 毫秒
1.
In Assemble‐To‐Order (ATO) systems, situations may arise in which customer demand must be backlogged due to a shortage of some components, leaving available stock of other components unused. Such unused component stock is called remnant stock. Remnant stock is a consequence of both component ordering decisions and decisions regarding allocation of components to end‐product demand. In this article, we examine periodic‐review ATO systems under linear holding and backlogging costs with a component installation stock policy and a First‐Come‐First‐Served (FCFS) allocation policy. We show that the FCFS allocation policy decouples the problem of optimal component allocation over time into deterministic period‐by‐period optimal component allocation problems. We denote the optimal allocation of components to end‐product demand as multimatching. We solve the multi‐matching problem by an iterative algorithm. In addition, an approximation scheme for the joint replenishment and allocation optimization problem with both upper and lower bounds is proposed. Numerical experiments for base‐stock component replenishment policies show that under optimal base‐stock policies and optimal allocation, remnant stock holding costs must be taken into account. Finally, joint optimization incorporating optimal FCFS component allocation is valuable because it provides a benchmark against which heuristic methods can be compared. © 2015 Wiley Periodicals, Inc. Naval Research Logistics 62: 158–169, 2015  相似文献   

2.
We consider a two‐echelon inventory system with a manufacturer operating from a warehouse supplying multiple distribution centers (DCs) that satisfy the demand originating from multiple sources. The manufacturer has a finite production capacity and production times are stochastic. Demand from each source follows an independent Poisson process. We assume that the transportation times between the warehouse and DCs may be positive which may require keeping inventory at both the warehouse and DCs. Inventory in both echelons is managed using the base‐stock policy. Each demand source can procure the product from one or more DCs, each incurring a different fulfilment cost. The objective is to determine the optimal base‐stock levels at the warehouse and DCs as well as the assignment of the demand sources to the DCs so that the sum of inventory holding, backlog, and transportation costs is minimized. We obtain a simple equation for finding the optimal base‐stock level at each DC and an upper bound for the optimal base‐stock level at the warehouse. We demonstrate several managerial insights including that the demand from each source is optimally fulfilled entirely from a single distribution center, and as the system's utilization approaches 1, the optimal base‐stock level increases in the transportation time at a rate equal to the demand rate arriving at the DC. © 2011 Wiley Periodicals, Inc. Naval Research Logistics, 2011  相似文献   

3.
We study a component inventory planning problem in an assemble‐to‐order environment faced by many contract manufacturers in which both quick delivery and efficient management of component inventory are crucial for the manufacturers to achieve profitability in a highly competitive market. Extending a recent study in a similar problem setting by the same authors, we analyze an optimization model for determining the optimal component stocking decision for a contract manufacturer facing an uncertain future demand, where product price depends on the delivery times. In contrast to our earlier work, this paper considers the situation where the contract manufacturer needs to deliver the full order quantity in one single shipment. This delivery requirement is appropriate for many industries, such as the garment and toy industries, where the economies of scale in transportation is essential. We develop efficient solution procedures for solving this optimization problem. We use our model results to illustrate how the different model parameters affect the optimal solution. We also compare the results under this full‐shipment model with those from our earlier work that allows for multiple partial shipments. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   

4.
We consider two specially structured assemble‐to‐order (ATO) systems—the N‐ and W‐systems—under continuous review, stochastic demand, and nonidentical component replenishment leadtimes. Using a hybrid approach that combines sample‐path analysis, linear programming, and the tower property of conditional expectation, we characterize the optimal component replenishment policy and common‐component allocation rule, present comparative statics of the optimal policy parameters, and show that some commonly used heuristic policies can lead to significant optimality loss. The optimality results require certain symmetry in the cost parameters. In the absence of this symmetry, we show that, for systems with high demand volume, the asymptotically optimal policy has essentially the same structure; otherwise, the optimal policies have no clear structure. For these latter systems, we develop heuristic policies and show their effectiveness. © 2016 Wiley Periodicals, Inc. Naval Research Logistics 62: 617–645, 2015  相似文献   

5.
A two‐echelon distribution inventory system with a central warehouse and a number of retailers is considered. The retailers face stochastic demand and replenish from the warehouse, which, in turn, replenishes from an outside supplier. The system is reviewed continuously and demands that cannot be met directly are backordered. Standard holding and backorder costs are considered. In the literature on multi‐echelon inventory control it is standard to assume that backorders at the warehouse are served according to a first come–first served policy (FCFS). This allocation rule simplifies the analysis but is normally not optimal. It is shown that the FCFS rule can, in the worst case, lead to an asymptotically unbounded relative cost increase as the number of retailers approaches infinity. We also provide a new heuristic that will always give a reduction of the expected costs. A numerical study indicates that the average cost reduction when using the heuristic is about two percent. The suggested heuristic is also compared with two existing heuristics. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   

6.
This article studies the optimal control of a periodic‐review make‐to‐stock system with limited production capacity and multiple demand classes. In this system, a single product is produced to fulfill several classes of demands. The manager has to make the production and inventory allocation decisions. His objective is to minimize the expected total discounted cost. The production decision is made at the beginning of each period and determines the amount of products to be produced. The inventory allocation decision is made after receiving the random demands and determines the amount of demands to be satisfied. A modified base stock policy is shown to be optimal for production, and a multi‐level rationing policy is shown to be optimal for inventory allocation. Then a heuristic algorithm is proposed to approximate the optimal policy. The numerical studies show that the heuristic algorithm is very effective. © 2011 Wiley Periodicals, Inc. Naval Research Logistics 58: 43–58, 2011  相似文献   

7.
We study a periodic-review assemble-to-order (ATO) system with multiple components and multiple products, in which the inventory replenishment for each component follows an independent base-stock policy and stochastic product demands are satisfied according to a First-Come-First-Served rule. We assume that the replenishment for various component suffers from lead time uncertainty. However, the decision maker has the so-called advance supply information (ASI) associated with the lead times and thus can take advantage of the information for system optimization. We propose a multistage stochastic integer program that incorporates ASI to address the joint optimization of inventory replenishment and component allocation. The optimal base-stock policy for the inventory replenishment is determined using the sample average approximation algorithm. Also, we provide a modified order-based component allocation (MOBCA) heuristic for the component allocation. We additionally consider a special case of the variable lead times where the resulting two-stage stochastic programming model can be characterized as a single-scenario case of the proposed multistage model. We carry out extensive computational studies to quantify the benefits of integrating ASI into joint optimization and to explore the possibility of employing the two-stage model as a relatively efficient approximation scheme for the multistage model.  相似文献   

8.
In the classical EPQ model with continuous and constant demand, holding and setup costs are minimized when the production rate is no larger than the demand rate. However, the situation may change when demand is lumpy. We consider a firm that produces multiple products, each having a unique lumpy demand pattern. The decision involves determining both the lot size for each product and the allocation of resources for production rate improvements among the products. We find that each product's optimal production policy will take on only one of two forms: either continuous production or lot‐for‐lot production. The problem is then formulated as a nonlinear nonsmooth knapsack problem among products determined to be candidates for resource allocation. A heuristic procedure is developed to determine allocation amounts. The procedure decomposes the problem into a mixed integer program and a nonlinear convex resource allocation problem. Numerical tests suggest that the heuristic performs very well on average compared to the optimal solution. Both the model and the heuristic procedure can be extended to allow the company to simultaneously alter both the production rates and the incoming demand lot sizes through quantity discounts. Extensions can also be made to address the case where a single investment increases the production rate of multiple products. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004.  相似文献   

9.
We consider the joint pricing and inventory‐control problem for a retailer who orders, stocks, and sells two products. Cross‐price effects exist between the two products, which means that the demand of each product depends on the prices of both products. We derive the optimal pricing and inventory‐control policy and show that this policy differs from the base‐stock list‐price policy, which is optimal for the one‐product problem. We find that the retailer can significantly improve profits by managing the two products jointly as opposed to independently, especially when the cross‐price demand elasticity is high. We also find that the retailer can considerably improve profits by using dynamic pricing as opposed to static pricing, especially when the demand is nonstationary. © 2009 Wiley Periodicals, Inc. Naval Research Logistics, 2009  相似文献   

10.
We consider a capacitated inventory model with flexible delivery upgrades, in which the seller allocates its on‐hand inventory to price‐ and delivery‐time‐sensitive customers. The seller has two decisions: inventory commitment and replenishment. The former addresses how the on‐hand inventories are allocated between the two classes of customers within an inventory cycle. The latter addresses how the inventory is replenished between inventory cycles. We develop optimal inventory allocation, upgrade, and replenishment policies and demonstrate that the optimal policy can be characterized by a set of switching curves. © 2014 Wiley Periodicals, Inc. Naval Research Logistics 61: 418–426, 2014  相似文献   

11.
This article is concerned with the determination of pricing strategies for a firm that in each period of a finite horizon receives replenishment quantities of a single product which it sells in two markets, for example, a long‐distance market and an on‐site market. The key difference between the two markets is that the long‐distance market provides for a one period delay in demand fulfillment. In contrast, on‐site orders must be filled immediately as the customer is at the physical on‐site location. We model the demands in consecutive periods as independent random variables and their distributions depend on the item's price in accordance with two general stochastic demand functions: additive or multiplicative. The firm uses a single pool of inventory to fulfill demands from both markets. We investigate properties of the structure of the dynamic pricing strategy that maximizes the total expected discounted profit over the finite time horizon, under fixed or controlled replenishment conditions. Further, we provide conditions under which one market may be the preferred outlet to sale over the other. © 2015 Wiley Periodicals, Inc. Naval Research Logistics 62: 531–549, 2015  相似文献   

12.
Technology products often experience a life‐cycle demand pattern that resembles a diffusion process, with weak demand in the beginning and the end of the life cycle and high demand intensity in between. The customer price‐sensitivity also changes over the life cycle of the product. We study the prespecified pricing decision for a product that exhibits such demand characteristics. In particular, we determine the optimal set of discrete prices and the times to switch from one price to another, when a limited number of price changes are allowed. Our study shows that the optimal prices and switching times show interesting patterns that depend on the product's demand pattern and the change in the customers' price sensitivity over the life cycle of the product. © 2012 Wiley Periodicals, Inc. Naval Research Logistics, 2012  相似文献   

13.
We study a stochastic inventory model of a firm that periodically orders a product from a make‐to‐order manufacturer. Orders can be shipped by a combination of two freight modes that differ in lead‐times and costs, although orders are not allowed to cross. Placing an order as well as each use of each freight mode has a fixed and a quantity proportional cost. The decision of how to allocate units between the two freight modes utilizes information about demand during the completion of manufacturing. We derive the optimal freight mode allocation policy, and show that the optimal policy for placing orders is not an (s,S) policy in general. We provide tight bounds for the optimal policy that can be calculated by solving single period problems. Our analysis enables insights into the structure of the optimal policy specifying the conditions under which it simplifies to an (s,S) policy. We characterize the best (s,S) policy for our model, and through extensive numerical investigation show that its performance is comparable with the optimal policy in most cases. Our numerical study also sheds light on the benefits of the dual freight model over the single freight models. © 2011 Wiley Periodicals, Inc. Naval Research Logistics, 2011  相似文献   

14.
We consider a periodic review model over a finite horizon for a perishable product with fixed lifetime equal to two review periods. The excess demand in a period is backlogged. The optimal replenishment and demand management (using price) decisions for such a product depend on the relative order of consumption of fresh and old units. We obtain insights on the structure of these decisions when the order of consumption is first‐in, first‐out and last‐in, first‐out. For the FIFO system, we also obtain bounds on both the optimal replenishment quantity as well as expected demand. We compare the FIFO system to two widely analyzed inventory systems that correspond to nonperishable and one‐period lifetime products to understand if demand management would modify our understanding of the relationship among the three systems. In a counterintuitive result, we find that it is more likely that bigger orders are placed in the FIFO system than for a nonperishable product when demand is managed. © 2013 Wiley Periodicals, Inc. Naval Research Logistics, 2013  相似文献   

15.
Supplier diversification, contingent sourcing, and demand switching (whereby a firm shifts customers to a different product if their preferred product is unavailable), are key building blocks of a disruption‐management strategy for firms that sell multiple products over a single season. In this article, we evaluate 12 possible disruption‐management strategies (combinations of the basic building‐block tactics) in the context of a two‐product newsvendor. We investigate the influence of nine attributes of the firm, its supplier(s), and its products on the firs preference for the various strategies. These attributes include supplier reliability, supplier failure correlation, payment responsibility in the event of a supply failure, product contribution margin, product substitutability, demand uncertainties and correlation, and the decision makes risk aversion. Our results show that contingent sourcing is preferred to supplier diversification as the supply risk (failure probability) increases, but diversification is preferred to contingent sourcing as the demand risk (demand uncertainty) increases. We find that demand switching is not effective at managing supply risk if the products are sourced from the same set of suppliers. Demand switching is effective at managing demand risk and so can be preferred to the other tactics if supply risk is low. Risk aversion makes contingent sourcing preferable over a wider set of supply and demand‐risk combinations. We also find a two‐tactic strategy provides almost the same benefit as a three‐tactic strategy for most reasonable supply and demand‐risk combinations. © 2009 Wiley Periodicals, Inc. Naval Research Logistics, 2009  相似文献   

16.
In many applications, managers face the problem of replenishing and selling products during a finite time horizon. We investigate the problem of making dynamic and joint decisions on product replenishment and selling in order to improve profit. We consider a backlog scenario in which penalty cost (resulting from fulfillment delay) and accommodation cost (resulting from shortage at the end of the selling horizon) are incurred. Based on continuous‐time and discrete‐state dynamic programming, we study the optimal joint decisions and characterize their structural properties. We establish an upper bound for the optimal expected profit and develop a fluid policy by resorting to the deterministic version of the problem (ie, the fluid problem). The fluid policy is shown to be asymptotically optimal for the original stochastic problem when the problem size is sufficiently large. The static nature of the fluid policy and its lack of flexibility in matching supply with demand motivate us to develop a “target‐inventory” heuristic, which is shown, numerically, to be a significant improvement over the fluid policy. Scenarios with discrete feasible sets and lost‐sales are also discussed in this article.  相似文献   

17.
The focus of this paper is on determining the requirements of different component options of a modular end‐product in an uncertain environment. We explicitly model two distinct sources of uncertainty: stochastic end‐product demand and unknown market proportions for the different product options available. Our cost minimizing model focuses on determining the optimal requirements policies for component options that meet a pre‐set service level. We show that simple common‐sense requirements policies are not generally optimal; there is a non‐linear connection between service level and component requirements that is hard to characterize without a detailed analysis. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2006  相似文献   

18.
We consider two‐stage tandem queueing systems with dedicated servers in each station and a flexible server that is trained to serve both stations. We assume no arrivals, exponential service times, and linear holding costs for jobs present in the system. We study the optimal dynamic assignment of servers to jobs assuming a noncollaborative work discipline with idling and preemptions allowed. For larger holding costs in the first station, we show that (i) nonidling policies are optimal and (ii) if the flexible server is not faster than the dedicated servers, the optimal server allocation strategy has a threshold‐type structure. For all other cases, we provide numerical results that support the optimality of threshold‐type policies. Our numerical experiments also indicate that when the flexible server is faster than the dedicated server of the second station, the optimal policy may have counterintuitive properties, which is not the case when a collaborative service discipline is assumed. © 2014 Wiley Periodicals, Inc. Naval Research Logistics 61: 435–446, 2014  相似文献   

19.
We consider a simple two‐stage supply chain with a single retailer facing i.i.d. demand and a single manufacturer with finite production capacity. We analyze the value of information sharing between the retailer and the manufacturer over a finite time horizon. In our model, the manufacturer receives demand information from the retailer even during time periods in which the retailer does not order. To analyze the impact of information sharing, we consider the following three strategies: (1) the retailer does not share demand information with the manufacturer; (2) the retailer does share demand information with the manufacturer and the manufacturer uses the optimal policy to schedule production; (3) the retailer shares demand information with the manufacturer and the manufacturer uses a greedy policy to schedule production. These strategies allow us to study the impact of information sharing on the manufacturer as a function of the production capacity, and the frequency and timing in which demand information is shared. © 2003 Wiley Periodicals, Inc. Naval Research Logistics, 2003  相似文献   

20.
This paper studies a periodic‐review pricing and inventory control problem for a retailer, which faces stochastic price‐sensitive demand, under quite general modeling assumptions. Any unsatisfied demand is lost, and any leftover inventory at the end of the finite selling horizon has a salvage value. The cost component for the retailer includes holding, shortage, and both variable and fixed ordering costs. The retailer's objective is to maximize its discounted expected profit over the selling horizon by dynamically deciding on the optimal pricing and replenishment policy for each period. We show that, under a mild assumption on the additive demand function, at the beginning of each period an (s,S) policy is optimal for replenishment, and the value of the optimal price depends on the inventory level after the replenishment decision has been done. Our numerical study also suggests that for a sufficiently long selling horizon, the optimal policy is almost stationary. Furthermore, the fixed ordering cost (K) plays a significant role in our modeling framework. Specifically, any increase in K results in lower s and higher S. On the other hand, the profit impact of dynamically changing the retail price, contrasted with a single fixed price throughout the selling horizon, also increases with K. We demonstrate that using the optimal policy values from a model with backordering of unmet demands as approximations in our model might result in significant profit penalty. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号