首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 838 毫秒
1.
We study a stochastic outpatient appointment scheduling problem (SOASP) in which we need to design a schedule and an adaptive rescheduling (i.e., resequencing or declining) policy for a set of patients. Each patient has a known type and associated probability distributions of random service duration and random arrival time. Finding a provably optimal solution to this problem requires solving a multistage stochastic mixed‐integer program (MSMIP) with a schedule optimization problem solved at each stage, determining the optimal rescheduling policy over the various random service durations and arrival times. In recognition that this MSMIP is intractable, we first consider a two‐stage model (TSM) that relaxes the nonanticipativity constraints of MSMIP and so yields a lower bound. Second, we derive a set of valid inequalities to strengthen and improve the solvability of the TSM formulation. Third, we obtain an upper bound for the MSMIP by solving the TSM under the feasible (and easily implementable) appointment order (AO) policy, which requires that patients are served in the order of their scheduled appointments, independent of their actual arrival times. Fourth, we propose a Monte Carlo approach to evaluate the relative gap between the MSMIP upper and lower bounds. Finally, in a series of numerical experiments, we show that these two bounds are very close in a wide range of SOASP instances, demonstrating the near‐optimality of the AO policy. We also identify parameter settings that result in a large gap in between these two bounds. Accordingly, we propose an alternative policy based on neighbor‐swapping. We demonstrate that this alternative policy leads to a much tighter upper bound and significantly shrinks the gap.  相似文献   

2.
The purpose of this paper is to investigate the problem of constructing an appointment template for scheduling patients at a specific type of multidisciplinary outpatient clinic called an integrated practice unit (IPU). The focus is on developing and solving a stochastic optimization model for a back pain IPU in the face of random arrivals, an uncertain patient mix, and variable service times. The deterministic version of the problem is modeled as a mixed integer program with the objective of minimizing a weighted combination of clinic closing time (duration) and total patient waiting time (length of stay). A two‐stage stochastic program is then derived to account for the randomness and the sequential nature of the decisions. Although it was not possible to solve the two‐stage problem for even a limited number of scenarios, the wait‐and‐see (WS) problem was sufficiently tractable to provide a lower bound on the stochastic solution. The introduction of valid inequalities, limiting indices, and the use of special ordered sets helped to speed up the computations. A greedy heuristic was also developed to obtain solutions much more quickly. Out of practical considerations, it was necessary to develop appointment templates with time slots at fixed intervals, which are not available from the WS solution. The first to be derived was the expected value (EV) template that is used to find the expected value of the EV solution (EEV). This solution provides an upper bound on the objective function value of the two‐stage stochastic program. The average gap between the EEV and WS solutions was 18%. Results from extensive computational testing are presented for the EV template and for our adaptation of three other templates found in the literature. Depending on the relative importance of the two objective function metrics, the results demonstrate the trade‐off that exists between them. For the templates investigated, the “closing time” ranged from an average of 235 to 275 minutes for a 300‐minute session, while the corresponding “total patient time in clinic” ranged from 80 to 71 minutes.  相似文献   

3.
Chemotherapy appointment scheduling is a challenging problem due to the uncertainty in premedication and infusion durations. In this paper, we formulate a two‐stage stochastic mixed integer programming model for the chemotherapy appointment scheduling problem under limited availability of nurses and infusion chairs. The objective is to minimize the expected weighted sum of nurse overtime, chair idle time, and patient waiting time. The computational burden to solve real‐life instances of this problem to optimality is significantly high, even in the deterministic case. To overcome this burden, we incorporate valid bounds and symmetry breaking constraints. Progressive hedging algorithm is implemented in order to solve the improved formulation heuristically. We enhance the algorithm through a penalty update method, cycle detection and variable fixing mechanisms, and a linear approximation of the objective function. Using numerical experiments based on real data from a major oncology hospital, we compare our solution approach with several scheduling heuristics from the relevant literature, generate managerial insights related to the impact of the number of nurses and chairs on appointment schedules, and estimate the value of stochastic solution to assess the significance of considering uncertainty.  相似文献   

4.
Magnetic resonance imaging and other multifunctional diagnostic facilities, which are considered as scarce resources of hospitals, typically provide services to patients with different medical needs. This article examines the admission policies during the appointment management of such facilities. We consider two categories of patients: regular patients who are scheduled in advance through an appointment system and emergency patients with randomly generated demands during the workday that must be served as soon as possible. According to the actual medical needs of patients, regular patients are segmented into multiple classes with different cancelation rates, no‐show probabilities, unit value contributions, and average service times. Management makes admission decisions on whether or not to accept a service request from a regular patient during the booking horizon to improve the overall value that could be generated during the workday. The decisions should be made by considering the cancelation and no‐show behavior of booked patients as well as the emergency patients that would have to be served because any overtime service would lead to higher costs. We studied the optimal admission decision using a continuous‐time discrete‐state dynamic programming model. Identifying an optimal policy for this discrete model is analytically intractable and numerically inefficient because the state is multidimensional and infinite. We propose to study a deterministic counterpart of the problem (i.e., the fluid control problem) and to develop a time‐based fluid policy that is shown to be asymptotically optimal for large‐scale problems. Furthermore, we propose to adopt a mixed fluid policy that is developed based on the information obtained from the fluid control problem. Numerical experiments demonstrate that this improved policy works effectively for small‐scale problems. © 2016 Wiley Periodicals, Inc. Naval Research Logistics 63: 287–304, 2016  相似文献   

5.
This paper proposes a new appointment rule for the single-server, multiple-customer service system. Unlike previous appointment rules, which perform well only in specific service environments, the new rule can be parameterized to perform well in different service environments. The new appointment rule is presented as a mathematical function of four environmental parameters, namely, the coefficient of variation of the service time, the percentage of customers' no-shows, the number of appointments per service session, and the cost ratio between the server's idle and customers' waiting cost per unit time. Once the values of these environmental parameters are estimated, the new appointment rule can be parameterized to perform well. The results show that new rule performs either as well as or better than existing appointment rules in a wide range of service environments. © 1998 John Wiley & Sons, Inc. Naval Research Logistics 45: 313–326, 1998  相似文献   

6.
We study a periodic-review assemble-to-order (ATO) system with multiple components and multiple products, in which the inventory replenishment for each component follows an independent base-stock policy and stochastic product demands are satisfied according to a First-Come-First-Served rule. We assume that the replenishment for various component suffers from lead time uncertainty. However, the decision maker has the so-called advance supply information (ASI) associated with the lead times and thus can take advantage of the information for system optimization. We propose a multistage stochastic integer program that incorporates ASI to address the joint optimization of inventory replenishment and component allocation. The optimal base-stock policy for the inventory replenishment is determined using the sample average approximation algorithm. Also, we provide a modified order-based component allocation (MOBCA) heuristic for the component allocation. We additionally consider a special case of the variable lead times where the resulting two-stage stochastic programming model can be characterized as a single-scenario case of the proposed multistage model. We carry out extensive computational studies to quantify the benefits of integrating ASI into joint optimization and to explore the possibility of employing the two-stage model as a relatively efficient approximation scheme for the multistage model.  相似文献   

7.
This article generalizes the dynamic and stochastic knapsack problem by allowing the decision‐maker to postpone the accept/reject decision for an item and maintain a queue of waiting items to be considered later. Postponed decisions are penalized with delay costs, while idle capacity incurs a holding cost. This generalization addresses applications where requests of scarce resources can be delayed, for example, dispatching in logistics and allocation of funding to investments. We model the problem as a Markov decision process and analyze it through dynamic programming. We show that the optimal policy with homogeneous‐sized items possesses a bithreshold structure, despite the high dimensionality of the decision space. Finally, the value (or price) of postponement is illustrated through numerical examples. © 2015 Wiley Periodicals, Inc. Naval Research Logistics 62: 267–292, 2015  相似文献   

8.
We consider a reader—writer system consisting of a single server and a fixed number of jobs (or customers) belonging to two classes. Class one jobs are called readers and any number of them can be processed simultaneously. Class two jobs are called writers and they have to be processed one at a time. When a writer is being processed no other writer or readers can be processed. A fixed number of readers and writers are ready for processing at time 0. Their processing times are independent random variables. Each reader and writer has a fixed waiting cost rate. We find optimal scheduling rules that minimize the expected total waiting cost (expected total weighted flowtime). We consider both nonpreemptive and preemptive scheduling. The optimal nonpreemptive schedule is derived by a variation of the usual interchange argument, while the optimal schedule in the preemptive case is given by a Gittins index policy. These index policies continue to be optimal for systems in which new writers enter the system in a Poisson fashion. © 1998 John Wiley & Sons, Inc. Naval Research Logistics 45: 483–495, 1998  相似文献   

9.
In a master surgery scheduling (MSS) problem, a hospital's operating room (OR) capacity is assigned to different medical specialties. This task is critical since the risk of assigning too much or too little OR time to a specialty is associated with overtime or deficit hours of the staff, deferral or delay of surgeries, and unsatisfied—or even endangered—patients. Most MSS approaches in the literature focus only on the OR while neglecting the impact on downstream units or reflect a simplified version of the real‐world situation. We present the first prediction model for the integrated OR scheduling problem based on machine learning. Our three‐step approach focuses on the intensive care unit (ICU) and reflects elective and urgent patients, inpatients and outpatients, and all possible paths through the hospital. We provide an empirical evaluation of our method with surgery data for Universitätsklinikum Augsburg, a German tertiary care hospital with 1700 beds. We show that our model outperforms a state‐of‐the‐art model by 43% in number of predicted beds. Our model can be used as supporting tool for hospital managers or incorporated in an optimization model. Eventually, we provide guidance to support hospital managers in scheduling surgeries more efficiently.  相似文献   

10.
抢险救灾非战争军事行动包括道路抢修和物资运输等任务,而这两类任务在灾后应急资源调度中存在关联性的影响,且面临路网结构可变及需求随机模糊等挑战,对此,提出了一种非确定性应急资源调度网络双层规划模型,设计了基于蒙特卡洛方法与遗传算法耦合的智能启发式求解策略.通过对典型情境下应急资源调度案例进行分析建模和数值求解,说明了该模型和算法的合理性和有效性.  相似文献   

11.
An optimal policy is characterized for operating the following system. Customers arrive in [O, T] according to a homogeneous Poisson process. Instantaneous services are provided at times O and T. Additional instantaneous services can be provided at N intermediate stop ping times. These times must be chosen to minimize the total expected customer-hours in [O, T] spent waiting for service.  相似文献   

12.
This paper presents a deterministic approach to schedule patients in an ambulatory surgical center (ASC) such that the number of postanesthesia care unit nurses at the center is minimized. We formulate the patient scheduling problem as new variants of the no‐wait, two‐stage process shop scheduling problem and present computational complexity results for the new scheduling models. Also, we develop a tabu search‐based heuristic algorithm to solve the patient scheduling problem. Our algorithm is shown to be very effective in finding near optimal schedules on a set of real data from a university hospital's ASC. © 2003 Wiley Periodicals, Inc. Naval Research Logistics, 2003  相似文献   

13.
We consider a stochastic counterpart of the well-known earliness-tardiness scheduling problem with a common due date, in which n stochastic jobs are to be processed on a single machine. The processing times of the jobs are independent and normally distributed random variables with known means and known variances that are proportional to the means. The due dates of the jobs are random variables following a common probability distribution. The objective is to minimize the expectation of a weighted combination of the earliness penalty, the tardiness penalty, and the flow-time penalty. One of our main results is that an optimal sequence for the problem must be V-shaped with respect to the mean processing times. Other characterizations of the optimal solution are also established. Two algorithms are proposed, which can generate optimal or near-optimal solutions in pseudopolynomial time. The proposed algorithms are also extended to problems where processing times do not satisfy the assumption in the model above, and are evaluated when processing times follow different probability distributions, including general normal (without the proportional relation between variances and means), uniform, Laplace, and exponential. © 1997 John Wiley & Sons, Inc. Naval Research Logistics 44, 531–557, 1997.  相似文献   

14.
This article studies a special case of stochastic three-machine, permutation flowshop scheduling. It is proved that a sequence where processing times on the first and third machines are in a monotone nondecreasing and nonincreasing order of the likelihood ratio, respectively, and on the second machine are equally distributed, minimizes distribution of schedule length.  相似文献   

15.
The defence of India in general and the North West Frontier in particular was central to strategic debate within the late Victorian army, creating one of the fault lines between rival factions competing for key commands and appointments. After a discussion of the varying strategic options debated within the British and Indian armies, the article examines the impact of Indian defence upon the ‘politics of command’ with particular reference to the appointment of Commanders-in-Chief in India between 1876 and 1892.  相似文献   

16.
We consider the problem of scheduling a set of jobs on a single machine subject to random breakdowns. We focus on the preemptive‐repeat model, which addresses the situation where, if a machine breaks down during the processing of a job, the work done on the job prior to the breakdown is lost and the job will have to be started from the beginning again when the machine resumes its work. We allow that (i) the uptimes and downtimes of the machine follow general probability distributions, (ii) the breakdown process of the machine depends upon the job being processed, (iii) the processing times of the jobs are random variables following arbitrary distributions, and (iv) after a breakdown, the processing time of a job may either remain a same but unknown amount, or be resampled according to its probability distribution. We first derive the optimal policy for a class of problems under the criterion to maximize the expected discounted reward earned from completing all jobs. The result is then applied to further obtain the optimal policies for other due date‐related criteria. We also discuss a method to compute the moments and probability distributions of job completion times by using their Laplace transforms, which can convert a general stochastic scheduling problem to its deterministic equivalent. The weighted squared flowtime problem and the maintenance checkup and repair problem are analyzed as applications. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004  相似文献   

17.
18.
考虑随机回放的卫星数传调度问题的一种求解方法   总被引:2,自引:0,他引:2  
针对考虑随机回放的卫星数传调度问题,从置换空间到调度解空间的映射方法和置换空间的搜索算法两方面进行了研究.提出了一种时间窗优先的置换序列映射算法,并证明该映射算法可以将置换序列映射到调度解空间上的最优解.提出了一种遗传随机搜索算法,基于有记忆功能的随机邻域搜索,在置换空间上搜索产生优化调度的置换序列.仿真计算表明,遗传随机搜索算法可以增强遗传算法的局部搜索能力,在搜索结果上平均获得了2.72%的改进.  相似文献   

19.
This paper investigates the problem of choosing between two simple hypothesis, H0 and H1, in terms of independent, identically distributed random variables, when observations can be taken in groups. At any stage in the decision process it must be decided whether to stop and take action now or to continue, in which case the size of the next group of observations must be decided upon. The problem is to find an optimal procedure incorporating a stopping, group size (batch) and terminal action rule. It is proven, in general, that the optimal stopping and terminal action rule is of the sequential probability ratio type (SPRT). Fixed stopping rules of the SPRT type are studied and an iterative procedure of the policy improvement type, both with and without a value determination step, is developed. It is shown, for the general situation, that both the average risk and scheduling rule converge to the optima. Also, six suboptimal scheduling rules are considered with respect to the average risks they achieve. Numerical results are presented to illustrate the effectiveness of the procedures.  相似文献   

20.
We consider stochastic scheduling models which have the natural character that jobs improve while being processed, but deteriorate (and may possibly leave the system altogether) while processing is diverted elsewhere. Such restless bandit problems are shown to be indexable in the sense of Whittle. A numerical study which elucidates the strong performance of the resulting index policy is complemented by a theoretical study which demonstrates the optimality of the index policy under given conditions and which develops performance guarantees for the index heuristic more generally. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 706–721, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/nav.10036  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号