首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《防务技术》2019,15(3):338-343
In the present work, the surface characteristics of Electrical Discharge Machined (EDM) Al (6351)SiC and Al (6351)SiCB4C composites are investigated. The composites are prepared by employing the conventional stir casting technique, as it can produce better particle dispersion in the matrix. The detailed experimental study is performed on the composites by varying current (I), duty factor (τ), pulse on time (Ton), and the gap voltage (V) in order to analyze the Heat Affected Zone (HAZ) formed in the sub surface and the average crater diameter formed on the machined surface of the composites as an output function. The formation of recast layers, presence of bubbles and the surface texture of the composites at various machining conditions are observed. The results show that the increased Metal Removal Rate (MRR) increases the depth of HAZ and the average crater diameter on the machined area. Further, the addition of B4C particles to the composite produces more surface defect than the AlSiC composite.  相似文献   

2.
《防务技术》2015,11(2)
This paper presents a study on surface roughness generated by high speed milling of high volume fraction(65%) silicon carbide particlereinforced aluminum matrix(Si Cp/Al) composites.Typical 2D(Raand Rz) and 3D(Saand Sq) surface roughness parameters were selected to evaluate the influence of the milling parameters on the surface quality in comparison with aluminum alloy.The 3D topography of the milled surface was studied as well.The results indicate that 3D parameters(Saand Sq) are more capable to describe the influence of the milling parameters on the surface quality,and among them Sqis preferable due to its good sensitivity.Sqdecreases with milling speed and increases with feed rate.The influence of axial depth of cut(ADOC) is negligible.  相似文献   

3.
《防务技术》2014,10(1):28-33
A differential/integral method to estimate the kinetic parameters (apparent activation energy Ea and pre-exponential factor A) for thermal decomposition reaction of energetic materials based on Kooij formula are applied to study the nonisothermal decomposition reaction kinetics of hexanitrohexaazaisowurtzitane (HNIW) by analyzing nonisothermal DSC curve data. The apparent activation energy (Ea) obtained by the integral isoconversional non-isothermal method based on Kooij formula is used to check the constancy and validity of apparent activation energy by the differential/integral method based on Kooij formula. The most probable mechanism function of thermal decomposition reaction of HNIW is determined by a logical choice method. The equations for calculating the critical temperatures of thermal explosion (Tb) and adiabatic time-to-explosion (tTIad) based on Kooij formula are used to calculate the values of Tb and tTIad to evaluate the thermal safety and heat-resistant ability of HNIW. All the original data needed for analyzing the kinetic parameters are from nonisothermal DSC curves. The results show that the kinetic model function in differential form and the values of Ea and A of decomposition reaction of HNIW are 3(1 − α)[−ln(1 − α)]2/3, 152.73 kJ mol−1 and 1011.97 s−1, respectively, and the values of self-accelerating decomposition temperature (TSADT), Tb and tTIad are 486.55 K, 493.11 K and 52.01 s, respectively.  相似文献   

4.
Consider a system consisting of n separately maintained independent components where the components alternate between intervals in which they are “up” and in which they are “down”. When the ith component goes up [down] then, independent of the past, it remains up [down] for a random length of time, having distribution Fi[Gi], and then goes down [up]. We say that component i is failed at time t if it has been “down” at all time points s ?[t-A.t]: otherwise it is said to be working. Thus, a component is failed if it is down and has been down for the previous A time units. Assuming that all components initially start “up,” let T denote the first time they are all failed, at which point we say the system is failed. We obtain the moment-generating function of T when n = l, for general F and G, thus generalizing previous results which assumed that at least one of these distributions be exponential. In addition, we present a condition under which T is an NBU (new better than used) random variable. Finally we assume that all the up and down distributions Fi and Gi i = l,….n, are exponential, and we obtain an exact expression for E(T) for general n; in addition we obtain bounds for all higher moments of T by showing that T is NBU.  相似文献   

5.
6.
《防务技术》2019,15(3):313-318
In a quest of search for a new burning rate modifier for composite propellant, strontium titanate (SrTiO3), a perovskite oxide has been chosen for evaluation in a composite propellant formulation based on its other catalytic applications. Initially, SrTiO3 was characterized for particle size, morphology and material/phase identification (using XRD). By varying SrTiO3 content in a standard composite propellant, different compositions were prepared and their performance and processing parameters like the end of mix (EOM) viscosity, mechanical properties, density, burning rate, pressure exponent (n-value), etc. were measured. The results reveal that 2% SrTiO3 causes more than 12% enhancement in propellant burning rate (at 70 ksc pressure) in comparison to the standard propellant composition. The pressure exponent also increases to 0.46, whereas the standard composition was having its value as 0.35.  相似文献   

7.
Barbara 《防务技术》2021,17(5):1740-1752
Ammonium nitrate and fuel oil (ANFO) based explosive is a classic example of non-ideal high explosives. Its detonation is characterized by a strong dependence of detonation parameters on explosive charge diameter, presence and characteristics of confinement, as well as incomplete consumption of explosive at the sonic point.In this work we propose a detonation model based on the Wood-Kirkwood (WK) theory coupled with the thermochemical code EXPLO5 and supplemented with reaction rate models. Our objective is to analyze the validity of the model for highly non-ideal ANFO explosives, with emphasis on effect of reaction rate models.It was found that both single-step and two-step pressure-based models can be calibrated to reproduce experimental detonation velocity-charge radius data of ANFO at radii significantly above the failure radius (i.e. for D/Did > ∼0.6). Single-step pressure-based model, with the pressure exponent equal to 1.4, proved to be the most accurate, even in the vicinity of the failure radius. The impact of the rate models is most evident on temporal (and spatial) distribution of flow parameters in detonation driving zone, especially when it comes to the conversion and width of detonation driving zone.  相似文献   

8.
《防务技术》2020,16(5):1051-1061
This research was aimed to study the effect winding orientation on the crashworthiness performance of hybrid tube. The specimens tested under quasi-static compression load involve of three winding parameters (θ = 30°, 45° and 70°) of hybrid kenaf/glass fiber reinforced epoxy and glass fiber reinforced epoxy as contrast specimen. The automated filament winding technique has been used in fabrication of hybrid and non-hybrid composite tube and crashworthiness performance was investigated experimentally. The effects of winding orientation on energy absorption capabilities and crashworthiness characteristic were investigated through quasi-static compression load and the result are compared with the glass fiber composite tube to justify the capability of hybrid natural/synthetic as energy absorption application. Hybridized samples proved to enhancing the progressive crushing capability as combination of local buckling, delaminate and brittle fracturing as progressive crushing modes.In the view of winding orientation aspect, the results of high winding orientation of hybrid composite tube elevated the crush load efficiency, specific energy absorption and energy absorption capability compared to glass composite tube (GFRP). The hybrid kenaf/glass composite tube with high winding orientation showed the best winding orientation to enhance the energy absorber characteristics as energy absorption application.  相似文献   

9.
A Markovian arrival process of order n, MAP(n), is typically described by two n × n transition rate matrices in terms of rate parameters. While it is straightforward and intuitive, the Markovian representation is redundant since the minimal number of parameters is n2 for non‐redundant MAP(n). It is well known that the redundancy complicates exact moment fittings. In this article, we present a minimal and unique Laplace‐Stieltjes transform (LST) representations for MAP(n)s. Even though the LST coefficients vector itself is not a minimal representation, we show that the joint LST of stationary intervals can be represented with the minimum number of parameters. We also propose another minimal representation for MAP(3)s based on coefficients of the characteristic polynomial equations of the two transition rate matrices. An exact moment fitting procedure is presented for MAP(3)s based on two proposed minimal representations. We also discuss how MAP(3)/G/1 departure process can be approximated as a MAP(3). A simple tandem queueing network example is presented to show that the MAP(3) performs better than the MAP(2) in queueing approximations especially under moderate traffic intensities. © 2016 Wiley Periodicals, Inc. Naval Research Logistics 63: 549–561, 2016  相似文献   

10.
《防务技术》2020,16(1):119-135
The behind-armor debris (BAD) formed by the perforation of an EFP is the main damage factor for the secondary destruction to the behind-armor components. Aiming at investigating the BAD caused by EFP, flash X-ray radiography combined with an experimental witness plate test method was used, and the FEM-SPH adaptive conversion algorithm in LS-DYNA software was employed to model the perforation process. The simulation results of the debris cloud shape and number of debris were in good agreement with the flash X-ray radiographs and perforated holes on the witness plate, respectively. Three-dimensional numerical simulations of EFP's penetration under various impact conditions were conducted. The results show that, an ellipsoidal debris cloud, with the major-to-minor axis radio (a/b) smaller than that caused by shaped charge jets, was formed behind the target. With the increase of target thickness (h) and decrease of impact velocity (v0) and obliquity (θ), the value of a/b decreases. The number of debris ejected from target is significantly higher than that from EFP. Based on the statistical analysis of the spatial distribution of the BAD, An engineering calculation model was established considering the influence of h, v0 and θ. The model can with reasonable accuracy predict the quantity and velocity distribution characteristics of BAD formed by EFP.  相似文献   

11.
Consider a network G(N. A) with n nodes, where node 1 designates its source node and node n designates its sink node. The cuts (Zi, =), i= 1…, n - 1 are called one-node cuts if 1 ? Zi,. n q Zi, Z1-? {1}, Zi ? Zi+1 and Zi and Zi+l differ by only one node. It is shown that these one-node cuts decompose G into 1 m n/2 subnetworks with known minimal cuts. Under certain circumstances, the proposed one-node decomposition can produce a minimal cut for G in 0(n2 ) machine operations. It is also shown that, under certain conditions, one-node cuts produce no decomposition. An alternative procedure is also introduced to overcome this situation. It is shown that this alternative procedure has the computational complexity of 0(n3).  相似文献   

12.
For each n, X1(n),…, Xn(n) are independent and identically distributed random variables, each with cumulative distribution function F(x) which is known to be absolutely continuous but is otherwise unknown. The problem is to test the hypothesis that \documentclass{article}\pagestyle{empty}\begin{document}$ F(x) = G\left( {{\textstyle{{x - \theta _1 } \over {\theta _2 }}}} \right) $\end{document}, where the cumulative distribution function Gx is completely specified and satisfies certain regularity conditions, and the parameters θ1, θ2 are unknown and unspecified, except that the scale parameter θ2, is positive. Y1 (n) ≦ Y2 (n) ≦ … ≦ Yn (n)are the ordered values of X1(n),…, Xn(n). A test based on a certain subset of {Yi(n)} is proposed, is shown to have asymptotically a normal distribution when the hypothesis is true, and is shown to be consistent against all alternatives satisfying a mild regularity condition.  相似文献   

13.
We consider an M/G/1 retrial queue with finite capacity of the retrial group. First, we obtain equations governing the dynamic of the waiting time. Then, we focus on the numerical inversion of the density function and the computation of moments. These results are used to approximate the waiting time of the M/G/1 queue with infinite retrial group for which direct analysis seems intractable. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   

14.
We consider a processing network in which jobs arrive at a fork‐node according to a renewal process. Each job requires the completion of m tasks, which are instantaneously assigned by the fork‐node to m task‐processing nodes that operate like G/M/1 queueing stations. The job is completed when all of its m tasks are finished. The sojourn time (or response time) of a job in this G/M/1 fork‐join network is the total time it takes to complete the m tasks. Our main result is a closed‐form approximation of the sojourn‐time distribution of a job that arrives in equilibrium. This is obtained by the use of bounds, properties of D/M/1 and M/M/1 fork‐join networks, and exploratory simulations. Statistical tests show that our approximation distributions are good fits for the sojourn‐time distributions obtained from simulations. © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   

15.
Consider a single-server exponential queueing loss system in which the arrival and service rates alternate between the paris (γ1, γ1), and (γ2, μ2), spending an exponential amount of time with rate i in (γi, μi), i = 1.2. It is shown that if all arrivals finding the server busy are lost, then the percentage of arrivals lost is a decreasing function of c. This is in line with a general conjecture of Ross to the effect that the “more nonstationary” a Poisson arrival process is, the greater the average customer delay (in infinite capacity models) or the greater the precentage of lost customers (in finite capacity models). We also study the limiting cases when c approaches 0 or infinity.  相似文献   

16.
《防务技术》2014,10(4):334-342
An artificial neural network (ANN) constitutive model is developed for high strength armor steel tempered at 500 °C, 600 °C and 650 °C based on high strain rate data generated from split Hopkinson pressure bar (SHPB) experiments. A new neural network configuration consisting of both training and validation is effectively employed to predict flow stress. Tempering temperature, strain rate and strain are considered as inputs, whereas flow stress is taken as output of the neural network. A comparative study on Johnson–Cook (J–C) model and neural network model is performed. It was observed that the developed neural network model could predict flow stress under various strain rates and tempering temperatures. The experimental stress–strain data obtained from high strain rate compression tests using SHPB, over a range of tempering temperatures (500–650 °C), strains (0.05–0.2) and strain rates (1000–5500/s) are employed to formulate J–C model to predict the high strain rate deformation behavior of high strength armor steels. The J-C model and the back-propagation ANN model were developed to predict the high strain rate deformation behavior of high strength armor steel and their predictability is evaluated in terms of correlation coefficient (R) and average absolute relative error (AARE). R and AARE for the J–C model are found to be 0.7461 and 27.624%, respectively, while R and AARE for the ANN model are 0.9995 and 2.58%, respectively. It was observed that the predictions by ANN model are in consistence with the experimental data for all tempering temperatures.  相似文献   

17.
Various methods and criteria for comparing coherent systems are discussed. Theoretical results are derived for comparing systems of a given order when components are assumed to have independent and identically distributed lifetimes. All comparisons rely on the representation of a system's lifetime distribution as a function of the system's “signature,” that is, as a function of the vector p= (p1, … , pn), where pi is the probability that the system fails upon the occurrence of the ith component failure. Sufficient conditions are provided for the lifetime of one system to be larger than that of another system in three different senses: stochastic ordering, hazard rate ordering, and likelihood ratio ordering. Further, a new preservation theorem for hazard rate ordering is established. In the final section, the notion of system signature is used to examine a recently published conjecture regarding componentwise and systemwise redundancy. © 1999 John Wiley & Sons, Inc. Naval Research Logistics 46: 507–523, 1999  相似文献   

18.
Motivated by applications to service systems, we develop simple engineering approximation formulas for the steady‐state performance of heavily loaded G/GI/n+GI multiserver queues, which can have non‐Poisson and nonrenewal arrivals and non‐exponential service‐time and patience‐time distributions. The formulas are based on recently established Gaussian many‐server heavy‐traffic limits in the efficiency‐driven (ED) regime, where the traffic intensity is fixed at ρ > 1, but the approximations also apply to systems in the quality‐and‐ED regime, where ρ > 1 but ρ is close to 1. Good performance across a wide range of parameters is obtained by making heuristic refinements, the main one being truncation of the queue length and waiting time approximations to nonnegative values. Simulation experiments show that the proposed approximations are effective for large‐scale queuing systems for a significant range of the traffic intensity ρ and the abandonment rate θ, roughly for ρ > 1.02 and θ > 2.0. © 2016 Wiley Periodicals, Inc. Naval Research Logistics 63: 187–217, 2016  相似文献   

19.
T identical exponential lifetime components out of which G are initially functioning (and B are not) are to be allocated to N subsystems, which are connected either in parallel or in series. Subsystem i, i = 1,…, N, functions when at least Ki of its components function and the whole system is maintained by a single repairman. Component repair times are identical independent exponentials and repaired components are as good as new. The problem of the determination of the assembly plan that will maximize the system reliability at any (arbitrary) time instant t is solved when the component failure rate is sufficiently small. For the parallel configuration, the optimal assembly plan allocates as many components as possible to the subsystem with the smallest Ki and allocates functioning components to subsystems in increasing order of the Ki's. For the series configuration, the optimal assembly plan allocates both the surplus and the functioning components equally to all subsystems whenever possible, and when not possible it favors subsystems in decreasing order of the Ki's. The solution is interpreted in the context of the optimal allocation of processors and an initial number of jobs in a problem of routing time consuming jobs to parallel multiprocessor queues. © John Wiley & Sons, Inc. Naval Research Logistics 48: 732–746, 2001  相似文献   

20.
《防务技术》2020,16(4):762-776
The cellulosic bast fibers are recognized as a justifiable and biodegradable substitute for producing moderate strength polymer composite materials because of their characteristics of renewability, eco-friendliness, and higher specific strength. Hence the aim of this research work is to fabricate Himalayan bast fibers (Nettle fiber (NF)/bauhinia vahlii fiber (BF)) based mono/hybrid epoxy composites at varying weight percentage of 2–6 wt% and evaluate the physical (void fraction and water absorption), mechanical (tensile strength, flexural strength, hardness) and sliding wear properties of as-fabricated composites. The 6 wt% NBF reinforced composites exhibited higher mechanical properties as compared to NF and BF composites with tensile strength of 34.04 MPa, flexural strength of 42.45 MPa, and hardness of 37.01 Hv respectively. The influence of various control factors (sliding velocity, NF/BF/NBF contents, normal load and sliding distance) on specific sliding wear rate of composites was evaluated by Taguchi (three factors at three levels) experimental design and the percentage contribution of these selected parameters on sliding wear performance was examined by Analysis of variance (ANOVA). The sliding wear property of as-developed composites was found to be greatly influenced by sliding velocity and the wear resistance was observed to be improved with the NF/BF/NBF contents. The wear mechanism of the as-fabricated composites has been elucidated by scanning electron microscopy analysis. The research outcomes demonstrated that the hybridization of Bauhinia vahlii fiber with Nettle fiber led to improve the mechanical and wear properties of epoxy composites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号