首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《防务技术》2022,18(11):1979-1999
A quasi-isentropic study on the process of driving a cylinder with aluminized explosives was carried out to examine the influence of the aluminum (Al) reaction rate on cylinder expansion and the physical parameters of the detonation products. Based on the proposed quasi-isentropic hypothesis and relevant isentropic theories, the characteristic lines of aluminized explosives driving a cylinder were analyzed, and a quasi-isentropic model was established. This model includes the variation of the cylinder wall velocity and the physical parameters of the detonation products with the Al reaction degree. Using previously reported experimental results, the quasi-isentropic model was verified to be applicative and accurate. This model was used to calculate the physical parameters for cylinder experiments with aluminized cyclotrimethylenetrinitramine explosives with 15.0 % and 30.0 % Al content. The results show that this quasi-isentropic model can be used not only to calculate the cylinder expansion rule or Al reaction degree, but also to calculate the physical parameters of the detonation products in the process of cylinder expansion. For explosives with 15.0 % and 30.0 % Al, 24.3 % and 18.5 % of the Al was found to have reacted at 33.9 μs and 34.0 μs, respectively. The difference in Al content results in different reaction intensity, occurrence time, and duration of two forms of reaction (diffusion and kinetic) between the Al powder and the detonation products; the post-detonation burning reaction between the Al powder and the detonation products prolongs the positive pressure action time, resulting in a continuous rise in temperature after detonation.  相似文献   

2.
《防务技术》2014,10(2):190-197
Plane wave generators (PWGs) are used to accelerate flyer plates to high velocities with their generated plane waves, which are widely used in the test of dynamic properties of materials. The traditional PWG is composed of two explosives with different detonation velocities. It is difficult to implement the related fabrication processes and control the generated waves due to its complicated structures. A simple plane wave generator is presented in this paper, which is composed of two identical cylindrical high explosive (HE) charges and an air-metal barrier. A theoretical model was established based on two different paths of the propagation of detonation waves, based on which the size of air-metal barrier was calculated for a given charge. The corresponding numerical simulations were also carried out by AUTODYN-2D® based on the calculated results, which were used to compare with the theoretical calculations. A detonation wave with a flatness of 0.039 μs within the range of 70-percent diameter of the main charge was obtained through the simulations.  相似文献   

3.
《防务技术》2022,18(12):2181-2189
An adverse effect resulting from explosive mine blasts is the production of toxic nitrogen oxides (NO and NO2) and carbon monoxide (CO). The empirical measurements of the concentration of toxic gases showed that it depends not only on the composition of an explosive and properties of its ingredients but also on several other parameters, such as volume of blasting chamber, explosive charge mass and design, confinement characteristics, surrounding atmosphere, etc. That explains why measured concentrations of toxic gases reported in literature significantly differ.In this paper, we discuss the possibility of theoretical prediction of the concentration of toxic gases by thermochemical equilibrium calculation applying two models: ideal detonation model and deflagration model. It can be demonstrated that thermochemical calculations can provide a good estimation of the measured concentrations and reproduce experimentally obtained effects of additives on the production of toxic gases. It was also found that the ideal detonation model applies to heavily confined explosive charges, while the deflagration model is more suitable for low detonation velocity explosives with light confinement.  相似文献   

4.
Nano-sized aluminum(Nano-Al)powders hold promise in enhancing the total energy of explosives and the metal acceleration ability at the same time.However,the near-detonation zone effects of reaction between Nano-Al with detonation products remain unclear.In this study,the overall reaction process of 170 nm Al with RDX explosive and its effect on detonation characteristics,detonation reaction zone,and the metal acceleration ability were comprehensively investigated through a variety of experiments such as the detonation velocity test,detonation pressure test,explosive/window interface velocity test and confined plate push test using high-resolution laser interferometry.Lithium fluoride(LiF),which has an inert behavior during the explosion,was used as a control to compare the contribution of the reaction of aluminum.A thermochemical approach that took into account the reactivity of aluminum and ensuing detonation products was adopted to calculate the additional energy release by afterburn.Combining the numerical simulations based on the calculated afterburn energy and experimental results,the param-eters in the detonation equation of state describing the Nano-Al reaction characteristics were calibrated.This study found that when the 170 nm Al content is from 0%to 15%,every 5%increase of aluminum resulted in about a 1.3%decrease in detonation velocity.Manganin pressure gauge measurement showed no significant enhancement in detonation pressure.The detonation reaction time and reaction zone length of RDX/Al/wax/80/15/5 explosive is 64 ns and 0.47 mm,which is respectively 14%and 8%higher than that of RDX/wax/95/5 explosive(57 ns and 0.39 mm).Explosive/window interface velocity curves show that 170 nm Al mainly reacted with the RDX detonation products after the detonation front.For the recording time of about 10 μs throughout the plate push test duration,the maximum plate velocity and plate acceleration time accelerated by RDX/Al/wax/80/15/5 explosive is 12%and 2.9 μs higher than that of RDX/LiF/wax/80/15/5,respectively,indicating that the aluminum reaction energy significantly increased the metal acceleration time and ability of the explosive.Numerical simulations with JWLM explosive equation of state show that when the detonation products expanded to 2 times the initial volume,over 80%of the aluminum had reacted,implying very high reactivity.These results are significant in attaining a clear understanding of the reaction mechanism of Nano-Al in the development of aluminized explosives.  相似文献   

5.
This paper reviews the achievements in the field of synthesis of new thermally resistant explosive compounds in the years 2009 through 2019. The performance characteristics of these compounds (sensitivity, thermal decomposition parameters, and detonation parameters) were compared with those of 1,3,5-triamino-2,4,6-trinitrobenzene, which still seems to be an unrivalled model of a thermally resistant and generally low-sensitivity explosive material. New thermally stable explosives (TSEs) were found among macromolecular compounds with tri- and dinitrophenyl groups, nitro and amine-nitro derivatives of azoles, and polynitro derivatives of calixarenes. Some of them match TATB in terms of thermal resistance and additionally have higher detonation parameters.  相似文献   

6.
《防务技术》2022,18(10):1834-1841
In the study, the two-color pyrometer technique was used to measure the transient temperature field of emulsion explosives with different contents of TiH2 powders. The experimental results showed that the introduction of TiH2 powders could significantly increase the explosion temperature and fireball duration of emulsion explosive. When emulsion explosives were ignited, the average explosion temperature of pure emulsion explosive continuously decreased while emulsion explosives added with TiH2 powders increased at first and then decreased. When the content of TiH2 powders was 6 mass%, the explosion average temperature reached its maximum value of 3095 K, increasing by 43.7% as compared with that of pure emulsion explosive. In addition, the results of air blast experiment and explosion heat test showed that the variation trends of shock wave parameters, explosion heat and theoretical explosion temperature of emulsion explosives with different contents of TiH2 powders were basically consistent with that of explosion temperature measured by the two-color pyrometer technique. In conclusion, the two-color pyrometer technique would be conducive to the formula design of emulsion explosive by understanding the explosion temperature characteristics.  相似文献   

7.
驱动管中柱状装药爆轰过程的数值模拟   总被引:1,自引:0,他引:1  
数值模拟了爆炸驱动管中柱状装药内爆轰波的传播过程.计算采用欧拉型有限体积方法,炸药及爆轰产物均采用JWL状态方程,空气采用理想气体状态方程,采用"点火-生长"模型计算化学反应速率.计算得到了驱动管内波系结构的发展过程,爆速与经验公式符合得较好.计算表明,驱动管侧壁的压力峰值在800MPa以上,而在管底中心处,由于激波的汇聚,压力峰值高达12.4GPa.  相似文献   

8.
《防务技术》2022,18(9):1538-1545
3-nitro-1,2,4-tri-azol-5-one (NTO) is a high energy insensitive explosive. To study the shock initiation process of NTO-based polymer bonded explosive JEOL-1 (32%octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), 32% NTO, 28% Al and 8% binder system), the cylinder test, the gap experiments and numerical simulation were carried out. Firstly, we got the detonation velocity (7746 m/s) and the parameters of Jones-Wilkins-Lee (JWL) equation of state (EOS) for detonation product by cylinder test and numerical simulation. Secondly, the Hugoniot curve of unreacted explosive for JEOL-1 was obtained calculating the data of pressure and time at different Lagrangian positions. Then the JWL EOS of unreacted explosive was obtained by utilizing the Hugoniot curve as the reference curve. Finally, we got the pressure growth history of JEOL-1 under shock wave stimulation and the parameters of the ignition and growth reaction rate equation were obtained by the pressure-time curves measured by the shock-initiation gap experiment and numerical simulation. The determined trinomial ignition and growth model (IG model) parameters can be applied to subsequently simulation analysis and design of insensitive ammunition with NTO-based polymer bonded explosive.  相似文献   

9.
A melt-cast Duan-Zhang-Kim (DZK) mesoscopic reaction rate model is developed for the shock initiation of melt-cast explosives based on the pore collapse hot-spot ignition mechanism. A series of shock initiation experiments was performed for the Comp B melt-cast explosive to estimate effects of the loading pressure and the particle size of granular explosive component, and the mesoscopic model is validated against the experimental data. Further numerical simulations indicate that the initial density and formula proportion greatly affect the hot-spot ignition of melt-cast explosives.  相似文献   

10.
《防务技术》2022,18(9):1602-1621
Investigating the damage and ignition behaviors of polymer-bonded explosive (PBX) under a coupled impact and high-temperature loading condition is required for the safe use of charged PBXs. An improved combined microcrack and microvoid model (CMM) was developed for better describing the thermal effects of deformation, damage, and ignition responses of PBXs. The main features of the model under typical dynamic loadings (i.e. uniaxial tension and compression, and lateral confinement) at different initial temperature were first studied. And then the effects of temperature on impact-shear sensitivity of HMX-based PBXs were investigated. The results showed that the ignition threshold velocity of shear-crack hotspots exhibits an increase from 260 to 270 to 315–325 m/s when initial temperature increases from 301 to 348 K; and then the threshold velocity decreases to 290–300 m/s with the initial temperature continually increasing to 378 K. The predicted ignition threshold velocity level of the explosives under coupled impact and high temperature loading conditions were consistent with the experimental data.  相似文献   

11.
《防务技术》2020,16(4):856-875
Reinforced concrete (RC) columns are widely used as supporting structures for high-piled wharfs. The study of damage model of a RC column due to underwater explosion is a critical issue to assess the wharf’s antiknock security. In this study, the dynamic response and damage model of circular RC columns subjected to underwater explosions were investigated by means of scaled-down experiment models. Experiments were carried out in a 10.0 m diameter tank with the water depth of 2.25 m, under different explosive quantities (0.025 kg–1.6 kg), stand-off distances (0.0 m–7.0 m), and detonation depths (0.25 m–2.0 m). The shock wave load and dynamic response of experiment models were measured by configuring sensors of pressure, acceleration, strain, and displacement. Then, the load distribution characteristics, time history of test data, and damage models related to present conditions were obtained and discussed. Three damage models, including bending failure, bending-shear failure and punching failure, were identified. In addition, the experience model of shock wave loads on the surface of a RC column was proposed for engineering application.  相似文献   

12.
The failure mechanism of a cylindrical shell cut into fragments by circumferential detonation collision was experimentally and numerically investigated. A self-designed detonation wave regulator was used to control the detonation and cut the shell. It was found that the self-designed regulator controlled the fragment shape. The macrostructure and micro-characteristics of fragments revealed that shear fracture was a prior mechanism, the shell fractured not only at the position of detonation collision, but the crack also penetrated the shell at the first contact position of the Chapmen-Jouguet (C-J) wave. The effects of groove number and outer layer thickness on the fracture behavior were tested by simulations. When the thickness of the outer layer was 5–18 mm, it has little effect on fragmentation of the shell, and shells all fractured at similar positions. The increase of the groove number reduced the fracture possibility of the first contact position of the C-J wave. When the groove number reached 7 with a 10 mm outer layer (1/4 model), the fracture only occurred at the position of detonation collision and the fragment width rebounded.  相似文献   

13.
固体灭火剂爆炸抛撒半径分析   总被引:3,自引:0,他引:3  
根据爆轰产物等熵膨胀原理和流体动力学理论,通过对灭火剂抛撒3个阶段的理论分析,推导出灭火剂抛撒的理论半径,估算灭火弹的灭火威力。在此基础上进行实爆试验,对两者的值进行比较分析,取得了良好的一致性,为优化灭火弹设计,提高灭火弹威力起着积极的指导作用。  相似文献   

14.
《防务技术》2014,10(2):245-250
Shock tubes create simulated blast waves which can be directed and measured to study blast wave effects under laboratory conditions. It is desirable to increase available peak pressure from ∼1 MPa to ∼5 MPa to simulate closer blast sources and facilitate development and testing of personal and vehicle armors. Three methods are experimentally investigated to increase peak simulated blast pressure produced by an oxy-acetylene driven shock tube while maintaining suitability for laboratory studies. The first method is the addition of a Shchelkin spiral priming section which supports a deflagration to detonation transition. This approach increases the average peak pressure from 1.17 MPa to 5.33 MPa while maintaining a relevant pressure-time curve (near Friedlander waveform). The second method is a bottleneck between the driving and driven sections. Coupling a 79 mm diameter driving section to a 53 mm driven section increases the peak pressure from 1.17 MPa to 2.25 MPa. A 103 mm driving section is used to increase peak pressure to 2.64 MPa. The third method, adding solid fuel to the driving section with the oxy-acetylene, results in a peak pressure increasing to 1.70 MPa.  相似文献   

15.
《防务技术》2020,16(2):290-298
In order to give the energy output structure of typical explosives near-ground explosion in real ground conditions, the free-field shockwave, ground reflection shockwave and Mach wave overpressure time history of composition B explosive, RDX explosive and aluminized explosive were measured by air pressure sensors and ground pressure sensors. The shape of the free-field shock wave, ground reflection shock wave, and Mach wave and explosion flame were captured by high-speed camera. The experimental results show that, at the same horizontal distance from the initiation point, the peak overpressure of explosive shock wave of composition B explosive, both in the air and on the ground, is less than that of RDX and aluminized explosives. At a distance of 3.0 m from the initiation point, the peak overpressure of aluminized explosives is slightly less than that of RDX explosives. Owing to the exothermic effect of aluminum powder, the pressure drop of aluminized explosives is slower than that of RDX explosives. At 5.0 m from the initiation point, the peak overpressure of aluminized explosives is larger than that of RDX explosives. At the same position from the initiation point, among the three kinds of explosives, the impulse of aluminized explosives is the maximum and the impulse of composition B explosives is the minimum. With the increase of the horizontal distance from the initiation point, the height of Mach triple-points (Mach steam) of the three explosives increases gradually. At the same horizontal distance from the initiation point, there is poorly difference in the height of Mach triple-points between aluminized explosive and RDX explosive, and the height of Mach triple-points of composition B explosive is much smaller than that of other two explosives. The maximum diameter and duration of the fireball formed by aluminized explosives are the largest, followed by composition B explosive, and the maximum diameter and duration of the fireball formed by RDX explosive are the smallest.  相似文献   

16.
The core-shell 2,4,6,8,10,12-Hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane/2,4,6-Trinitrotoluene (CL-20/TNT) composite was prepared by spray-drying method in which sensitive high energy explosive (CL-20) was coated with insensitive explosive (TNT). The structure and properties of different formulations of CL-20/TNT composite and CL-20/TNT mixture were characterized by scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Laser particle size analyzer, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), differential scanning calorimetry (DSC), impact sensitivity test and detonation performance. The results of SEM, TEM, XPS and XRD show that ϵ-CL-20 particles are coated by TNT. When the ratio of CL-20/TNT is 75/25, core-shell structure is well formed, and thickness of the shell is about 20–30 nm. And the analysis of heat and impact show that with the increase of TNT content, the TNT coating on the core-shell composite material can not only catalyze the thermal decomposition of core material (CL-20), but also greatly reduce the impact sensitivity. Compared with the CL-20/TNT mixture (75/25) at the same ratio, the characteristic drop height of core-shell CL-20/TNT composite (75/25) increased by 47.6% and the TNT coating can accelerate the nuclear decomposition in the CL-20/TNT composites. Therefore, the preparation of the core-shell composites can be regarded as a unique means, by which the composites are characterized by controllable decomposition rate, high energy and excellent mechanical sensitivity and could be applied to propellants and other fields.  相似文献   

17.
本文计算了爆轰波在可压缩金属板面上斜反射时的初始参数。计算中选用的五种炸药是TNT(p_0为1.64g/cm~3,1.45g/cm~3)、RDX(p_0为1.59g/cm~3,1.76g/cm~3,1.80g/cm~3)、RDX/TNT(77/23)(p_0为1.75g/cm~3)、Pentolite(p_0为1.65g/cm~3,1.68g/cm~3)和B 炸药(p_0为1.71g/cm~3);三种介质是铁、铜和铝。  相似文献   

18.
《防务技术》2014,10(4):343-348
2,6-diamino-3,5-dinitropyrazine-1-oxide (ANPZO), as an insensitive high explosive, with a high yield and excellent purity has been prepared at pilot plant scale by an improved method. The synthesized ANPZO is characterized by IR, laser granularity measurement, SEM and HPLC. The particle analysis revealed that the improved method could offer desired product with average particle size of 40 μm and high purity (>98.45%). The experimental parameters exhibited that the detonation velocity of the formulation based on ANPZO was higher than that of the corresponding TATB formulation. The DSC curve showed that the exothermic decomposition of the product occurred at the temperature between 300.5 °C and 360.4 °C. Furthermore, the sensitivity test suggests its safe nature towards mechanical stimulus.  相似文献   

19.
杀伤战斗部破片定向飞散特性研究   总被引:4,自引:0,他引:4       下载免费PDF全文
研究了钢预制破片壳体在四种装药爆轰驱动下的飞散特性。求得了使破片飞行路径呈平行型的预制破片壳体的临界半径及相应的破片初始速度。  相似文献   

20.
聚能射流形成过程的理论建模与分析   总被引:3,自引:0,他引:3       下载免费PDF全文
分析了聚能射流的形成过程,并对其中的各阶段进行了详细建模。在模型中考虑了炸药爆轰、金属的驱动、药型罩压垮以及射流和杵体的形成过程。采用该模型对某一聚能装药结构进行了计算,计算结果表明:药型罩顶部和底部微元的压垮速度较小,在射流头部形成反向速度梯度,与试验数据吻合较好。该模型对于多级侵彻战斗部的工程设计与侵彻参数的计算具有一定的参考价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号