首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present study deals with development of conceptual proof for jute rubber basedflexible composite block to completely arrest the projectile impacting the target at high velocity impact of 400 m/s through numerical simulation approach using finite element (FE) method. The proposed flexible composite blocks of repeating jute/rubber/jute (JRJ) units are modelled with varying thickness from 30 mm to 120 mm in increments of 30 mm and impacted by flat (F), ogival (O) and hemispherical (HS) shaped projectiles. All the considered projectiles are impacted with proposed flexible composite blocks of different thicknesses and the penetration behaviour of the projectile in each case is studied. The penetration depth of the projectile in case of partially penetrated cases are considered and the effect of thickness and projectile shape on percentage of penetration depth is statistically analyzed using Tagu-chi's design of experiments (DOE). Results reveal that the though proposedflexible composite block with thickness of 90 mm is just sufficient to arrest the complete penetration of the projectile, considering the safety issues, it is recommended to use theflexible composite with thickness of 120 mm. The nature of damage caused by the projectile in the flexible composite is also studied. Statistical studies show that thickness of the block plays a prominent role in determining the damage resistance of the flexible composite.  相似文献   

2.
《防务技术》2020,16(4):947-955
This study is undertaken to explore the use of natural fiber Jute-epoxy (JE), Jute-epoxy-rubber (JRE) sandwich composite for ballistic energy absorption. Energy absorbed and residual velocities for these composites are evaluated analytically and through Finite Element Analysis (FEA). FE analysis of JE plates is carried out for different thicknesses (3, 5, 10 and 15 mm). JE plates and JRE sandwiches having the same thickness (15 mm) are fabricated and tested to measure residual velocity and energy absorbed. The analytical results are found to agree well with the results of FE analysis with a maximum error of 9%. The study on JE composite plate reveals that thickness influences the energy absorption. Experimental and FE analysis study showed that JRE sandwiches have better energy absorption than JE plates. Energy absorption of a JRE sandwich is about 71% greater than JE plates. Damages obtained from FEA and testing are in good agreement. SEM analysis confirms composites failed by fiber rupture and fragmentation.  相似文献   

3.
Polymer matrix composites (PMC) are extensively been used in many engineering applications. Various natural fibers have emerged as potential replacements to synthetic fibers as reinforcing materials composites owing to their fairly better mechanical properties, low cost, environment friendliness and biodegradability. Selection of appropriate constituents of composites for a particular application is a tedious task for a designer/engineer. Impact loading has emerged as the serious threat for the composites used in structural or secondary structural application and demands the usage of appropriate fiber and matrix combination to enhance the energy absorption and mitigate the failure. The objective of the present review is to explore the composite with various fiber and matrix combination used for impact applications, identify the gap in the literature and suggest the potential naturally available fiber and matrix combination of composites for future work in the field of impact loading. The novelty of the present study lies in exploring the combination of naturally available fiber and matrix combination which can help in better energy absorption and mitigate the failure when subjected to impact loading. In addition, the application of multi attributes decision making (MADM) tools is demonstrated for selection of fiber and matrix materials which can serve as a benchmark study for the researchers in future.  相似文献   

4.
《防务技术》2020,16(6):1098-1105
Due to notable characteristics, sustainability concept and environmental issues, hybridisation natural with synthetic fibres to fabricate composites have been rapidly gaining market share in different applications (structural, military, aerospace and automotive vehicles). Compression, tension and fatigue tests of various stacking sequences of plain jute/carbon reinforced (PVB) polyvinyl butyral by hot hydraulic press technique were experimentally conducted. Six types of fabricated composites with various constituents (jute, carbon and their hybrids) were fabricated and tested. Notably, fatigue lifetime of hybrids increases with increasing the carbon content relative to the jute fibre content. On the other hand, Jute composites possess high strain compared to pure carbon composite, which gives an overall improvement in mechanical behaviours. Interestingly, H1 hybrid with Carbon/Jute/Carbon sequences offers similar fatigue stiffness behaviour of H3 hybrid with Carbon/Jute/Carbon/Jute sequences when subjected to cyclic loading. Carbon composite (C) exhibited the highest fatigue resistance, whiles jute composite (J) possessed the highest strain and semi brittle trends in both mechanical and fatigue performance. Results concluded that plain jute fibres could partially replace high-cost synthetic carbon fibres to produce more eco-friendly hybrids to be utilised in different composites industries.  相似文献   

5.
本文介绍了抗超高速撞击多层结构复合材料的设计、制备和实验,并对结果进行了讨论,实验证明,以SiC陶瓷基复合材料为防护层、以空心微珠或多孔变密度复合材料为缓冲层、以编织物复合材料为结构层的多层结构复合材料,具有面密度低、抗撞击速度范围宽、抗撞击性能好的特点。  相似文献   

6.
《防务技术》2020,16(4):787-801
The woven basalt fiber composites (WBFC) and the unidirectional [0°/90°/45°/-45°]s basalt fiber composites (UBFC) were prepared by hot-pressing. Three-point bending test, low velocity impact test, and ballistic test were performed to the prepared composites. After the tests, the specimens were recovered and analyzed for micromorphology. Three-point bending tests show that both the bending strength and stiffness of the WBFC surpass those of the UBFC. Low velocity impact test results show that the low velocity impact resistance to hemispherical impactor of the UBFC is higher than that of the WBFC, but the low velocity impact resistance to sharp impactor of the UBFC is lower than that of the WBFC. For the ballistic test, it can be found that the ballistic property of the UBFC is higher than that of the WBFC. After the tests, microscopic analysis of the specimens was applied, and their failure mechanism was discussed. The main failure modes of the UBFC are delamination and fibers breakage under the above loading conditions while the main failure mode of the WBFC is fibers breakage. Although delamination damage can be found in the WBFC under the above loading conditions, the degree of delamination is far less than that of the UBFC.  相似文献   

7.
为研究纤维缠绕复合材料夹芯圆柱体吸能元件在高应变率冲击压缩载荷作用下的变形损伤模式和能量吸收机理,采用ABAQUS商用有限元软件和分离式Hopkinson压杆装置开展数值模拟分析和试验验证研究。对比分析宏观力学响应规律和微观损伤破坏机理,可知吸能结构元件在高应变率压缩载荷下的力学响应具有典型的弹塑性特征,内部芯材主要产生压缩塑性损伤,而表层复合材料沿环向产生拉伸断裂破坏。研究表明,该吸能元件冲击压缩吸能特性优异,可满足水下结构平台的冲击防护和浮力储备要求。  相似文献   

8.
《防务技术》2022,18(11):2000-2007
The design of astonishing combinations of benzoxazine resins with various fillers is nowadays of great interest for high quality products, especially in ballistic armors. The objective of this study is to investigate a new hybrid material prepared as multi-layered composite plate by hand lay-up technique. Different composites were manufactured from Kevlar fabrics reinforced polybenzoxazine, which was filled with silane treated microcrystalline cellulose (MCC Si) at various amounts in the interlayers. The developed materials were tested for their flexural, dynamic mechanical and ballistic performance. The aim was to highlight the effect of adding different amounts of MCC Si on the behavior of the different plates. Compared to the baseline, the dynamic mechanical and bending tests revealed an obvious decrease of the glass transition of 21 °C and a notable increase in storage modulus and flexural strength of about 180 %and17%, respectively, upon adding 1% MMC Si as filler. Similarly, the ballistic test exhibited an enhancement in kinetic energy absorption for which the composite supplemented with 1% MCC Si had the maximal energy absorption of 166.60 J. These results indicated that the developed panels, with interesting mechanical and ballistic features, are suitable to be employed as raw materials to produce body armor.  相似文献   

9.
《防务技术》2022,18(10):1822-1833
High-performance ballistic fibers, such as aramid fiber and ultra-high-molecular-weight polyethylene (UHMWPE), are commonly used in anti-ballistic structures due to their low density, high tensile strength and high specific modulus. However, their low modulus in the thickness direction and insufficient shear strength limits their application in certain ballistic structure. In contrast, carbon fiber reinforced epoxy resin matrix composites (CFRP) have the characteristics of high modulus in the thickness direction and high shear resistance. However, carbon fibers are rarely used and applied for protection purposes. A hybridization with aramid fiber reinforced epoxy resin matrix composites (AFRP) and CFRP has the potential to improve the stiffness and the ballistic property of the typical ballistic fiber composites. The hybrid effects on the flexural property and ballistic performance of the hybrid CFRP/AFRP laminates were investigated. Through conducting mechanical property tests and ballistic tests, two sets of reliable simulation parameters for AFRP and CFRP were established using LS-DYNA software, respectively. The experimental results suggested that by increasing the content of CFRP that the flexural properties of hybrid CFRP/AFRP laminates were enhanced. The ballistic tests’ results and the simulation illustrated that the specific energy absorption by the perforation method of CFRP achieved 77.7% of AFRP. When CFRP was on the striking face, the shear resistance of the laminates and the resistance force to the projectiles was promoted at the initial penetration stage. The proportion of fiber tensile failures in the AFRP layers was also enhanced with the addition of CFRP during the penetration process. These improvements resulted in the ballistic performance of hybrid CFRP/AFRP laminates was better than AFRP when the CFRP content was 20 wt% and 30 wt%.  相似文献   

10.
针对海洋工程平台的防护吸能和浮力储备需求,设计一种纤维缠绕复合材料约束球形浮力芯材吸能结构。为分析其变形损伤特征和能量耗散机理,通过ABAQUS有限元软件和万能材料试验机开展数值模拟分析和试验验证研究。通过力学响应特征和损伤破坏模式分析可知,结构吸能设计的关键在于表层和芯材的泊松比匹配。芯材主要通过塑性压缩损伤和剪切断裂破坏吸收能量,而表层吸能则主要通过环向的花瓣形拉伸断裂破坏。研究表明,该型结构单元压缩吸能特性优异,可实现海洋工程结构平台的防护吸能和浮力储备要求。  相似文献   

11.
《防务技术》2019,15(3):282-294
In this study, a laminated woven bamboo/woven E glass/unsaturated polyester composite is developed to combat a ballistic impact from bullet under shooting test. The aim of this study is to understand the fundamental effects of the woven bamboo arrangement towards increasing ballistic resistance properties. The work focusses on the ballistic limit test known as NIJ V50, which qualifies materials to be registered for use in combat armor panels. The results show that the composites withstood 482.5 m/s ± 5 limit of bullet velocity, satisfying the NIJ test at level II. The findings give a strong sound basis decision to engineers whether or not green composites are qualified to replace synthetic composites in certain engineering applications.  相似文献   

12.
13.
Force chains based mesoscale simulation is conducted to investigate the response behavior of aluminum-polytetrafluoroethylene (Al-PTFE) granular composites under a low-velocity impact. A two-dimensional model followed the randomly normal distribution of real Al particles size is developed. The dynamic compressive process of Al-PTFE composites with varied Al mass fraction is simulated and validated against the experiments. The results indicate that, force chains behavior governed by the number and the size of agglomerated Al particles, significantly affects the impact response of the material. The failure mode of the material evolves from shear failure of matrix to debonding failure of particles with increasing density. A high crack area of the material is critical mechanism to arouse the initiation re-action. The damage maintained by force chains during large plastic strain builds up more local stresses concentration to enhance a possible reaction performance. In addition, simulation is performed with identical mass fraction but various Al size distribution to explore the effects of size centralization and dispersion on the mechanical properties of materials. It is found that smaller sized Al particle of com-posites are more preferred than its bulky material in ultimate strength. Increasing dispersed degree is facilitated to create stable force chains in samples with comparable particle number. The simulation studies provide further insights into the plastic deformation, failure mechanism, and possible energy release capacity for Al-PTFE composites, which is helpful for further design and application of reactive materials.  相似文献   

14.
破片模拟弹侵彻钢板的有限元分析   总被引:2,自引:0,他引:2  
根据破片模拟弹侵彻钢板的实验研究,采用MSC.Dytran对破片模拟弹侵彻钢板的侵彻过程、侵彻特性、钢板的破坏模式以及弹体的侵彻速度、靶板的侵彻阻力进行了有限元分析,并将分析结果与实验结果进行了比较.分析结果表明,破片模拟弹冲击钢装甲的侵彻过程可大致分为初始接触、弹体侵入、剪切冲塞和穿甲破坏4个阶段.有限元分析的破片模拟弹侵彻特性及靶板破坏模式与实验观测结果有较好的一致性,在靶板破口的正面,与弹体平面凸缘两端接触的部分,变形以剪切为主,而与切削面接触的部分,以挤压变形为主;靶板破口背面为剪切冲塞破坏;有限元模拟的弹体剩余速度与实验结果吻合较好,弹体侵彻过程中弹靶作用界面的速度和侵彻速度近似呈线性变化.有限元分析结果还表明,采用适当的模型,有限元法能较好地模拟破片模拟弹侵彻钢板的侵彻过程、侵彻特性以及钢板的破坏模式.  相似文献   

15.
In this study, the anti-penetration performance of polyurea/ASTM1405-steel composite plate subjected to high velocity projectile was analyzed. Two kinds of modified polyurea material (AMMT-053 and AMMT-055) were selected and a ballistic impact testing system including speed measuring target system and high-speed camera was designed. This experiment was conducted with a rifle and 5.8 mm projectile to explore the effects by the polyurea coating thickness, the polyurea coating position and the glass-fiber cloth on the anti-penetration performance of polyurea/ASTM1405-steel composite plate. The result showed that the effects of polyurea coating position were different between two types of polyurea, and that the effects of glass-fiber position were disparate between two types of polyurea as well. For AMMT-053 polyurea material, it was better to be on front face than on rear face; whereas for AMMT-055 pol-yurea, it was better to be on rear surface although the difference was very subtle. Additionally, formulas had been given to describe the relationship between the effectiveness of polyurea and the thickness of polyurea coating. In general, AMMT-055 had better anti-penetration performance than AMMT-053. Furthermore, five typical damage modes including self-healing, crack, local bulge, spallation and local fragmentation were defined and the failure mechanism was analyzed with the results of SHPB test. Additionally, the bonding strength played an important role in the anti-penetration performance of polyurea/steel composite plate.  相似文献   

16.
《防务技术》2020,16(1):201-207
Three different kinds of PELE (the penetrator with lateral efficiency) were launched by ballistic artillery to impact the multi-layer spaced metal target plates. The impact velocities of the projectiles were measured by the velocity measuring system. The damage degree and process of each layer of target plate impacted by the three kinds of projectiles were analyzed. The experimental results show that all the three kinds of projectiles have the effect of expanding holes on the multi-layer spaced metal target plates. For the normal structure PELE(without layered) with tungsten alloy jacket and the radial layered PELE with tungsten alloy jacket, the diameters of holes on the second layer of plates are 3.36 times and 3.76 times of the diameter of the projectile, respectively. For radial layered PELE with W/Zr-based amorphous composite jacket, due to the large number of tungsten wires dispersed after the impact, the diameter of the holes on the four-layer spaced plates can reach 2.4 times, 3.04 times, 5.36 times and 2.68 times of the diameter of the projectile. Besides, the normal structure PELE with tungsten alloy jacket and the radial layered PELE whit tungsten alloy jacket formed a large number of fragments impact marks on the third target plate. Although the number of fragments penetrating the third target plate is not as large as that of the normal structure PELE, the area of dispersion of fragments impact craters on the third target plate is larger by the radial layered PELE. The radial layered PELE with W/Zr-based amorphous composite jacket released a lot of heat energy due to the impact of the matrix material, and formed a large area of ablation marks on the last three target plates.  相似文献   

17.
为研究钢丝增强聚合物基复合条带的抗弹性能,基于冲击动力学理论分析其抗弹机理,再借助ANSYS/LS-DYNA软件和LS-PrePost前后处理器模拟有无增强钢丝2种工况下,条带对7.62 mm弹体的冲击响应。分析表明:条带的弹性模量、剪切模量和面密度会影响其能量吸收性能,能量吸收量随三者的增大而增大;由于聚合物基体的正交各向异性,应力云图显示出扁平椭圆状是合理的;在聚合物基复合条带中嵌入增强钢丝对条带整体的抗弹性能有积极的影响,但嵌入过量的钢丝会导致重量和成本的增加,因此需要对合理的钢丝配比率作进一步研究。研究结果可为钢丝增强聚合物基复合条带在野战防护结构中的应用提供参考。  相似文献   

18.
《防务技术》2019,15(6):958-963
The dispersion of magnetic nanoparticles in matrix is crucial to ensure optimum performance of the composite. The difficulty level of achieving good dispersion is further increase when a multi-phases of matrix is present. A pre-coating technique of magnetic nanoparticles with polypropylene using ball-mill prior to melt-blending process was employed to prepare a multi-phases thermoplastic natural rubber composite. The effect of filler loading (2 wt%-10 wt%) on morphology, structure, magnetic properties, thermal stability and dynamic mechanical properties of the composites were investigated. It was found that the NiZn ferrite nanoparticles act as nucleating agent to form beta isostatic polypropylene thermoplastic composites. The composites' magnetic properties are directly dependent on the filler concentration. The dispersion of magnetic fillers in polymer matrix plays role in affecting the magnetic properties and thermal stability. The preference of filler to locate at amorphous phase has distorted the chain orientation of natural rubber and polypropylene. Hence, the polymorphism and crystallinity of the matrix varied as the filler loading increased, affecting the dynamic mechanical properties. It was found that 8 wt% NiZn nanocomposite exhibits highest E’ and tanδ, indicating the dynamic mechanical properties of NiZn nanocomposite are affected by β-phase degree.  相似文献   

19.
Particulate composites are one of the widely used materials in producing numerous state-of-the-art components in biomedical, automobile, aerospace including defence technology. Variety of modelling techniques have been adopted in the past to model mechanical behaviour of particulate composites. Due to their favourable properties, particle-based methods provide a convenient platform to model failure or fracture of these composites. Smooth particle hydrodynamics (SPH) is one of such methods which demonstrate excellent potential for modelling failure or fracture of particulate composites in a Lagrangian setting. One of the major challenges in using SPH method for modelling composite materials depends on accurate and efficient way to treat interface and boundary conditions. In this paper, a master-slave method based multi-freedom constraints is proposed to impose essential boundary conditions and interfacial displacement constraints in modelling mechanical behaviour of composite materials using SPH method. The proposed methodology enforces the above constraints more accurately and requires only smaller condition number for system stiffness matrix than the procedures based on typical penalty function approach. A minimum cut-off value-based error criteria is employed to improve the compu-tational efficiency of the proposed methodology. In addition, the proposed method is further enhanced by adopting a modified numerical interpolation scheme along the boundary to increase the accuracy and computational efficiency. The numerical examples demonstrate that the proposed master-slave approach yields better accuracy in enforcing displacement constraints and requires approximately the same computational time as that of penalty method.  相似文献   

20.
《防务技术》2020,16(1):107-118
The phenomenon of static electricity is unpredictable, particularly when an aircraft flying at high altitude that causes the accumulation of static charges beyond a threshold value leading to the failure of its parts and systems including severe explosion and radio communication failure. The accumulation of static charges on aircraft is generated by the virtue of interaction between the outer surface of aircraft and the external environmental attributes encompasses air particles, ice, hail, dust, volcanic ash in addition to its triboelectric charging. In the recent years, advanced polymer-based composites or nanocomposites are preferred structural constituents for aircrafts due to their light weight and comparable mechanical properties, but such composite systems do not render low impedance path for charge flow and are subsequently vulnerable to effect of lightning strike and precipitation static. In this context, it is essential to develop conductive composite systems from non-conductive polymer matrix by nanofiller embodiments. The advent of carbon-based nanocomposite/nanomaterials have adequately addressed such issues related to the nonconductive polymer matrix and further turned into an avant-garde genre of materials. The current review envisioned to illustrate the detailed exploitation of various polymer nanocomposites in addition to especially mentioned epoxy composites based on carbon fillers like carbon black, carbon nanotube (single walled carbon nanotube and multi walled carbon nanotube) and graphene the development of antistatic application in aircraft in addition to the static charge phenomenon and condition for its prevalence in avionic systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号