首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
在分析、研究硝胺和AP CMDB推进剂燃烧模型的基础上,结合NEPE类推进剂的配方和燃烧性能特点,建立了NEPE类推进剂燃烧的物理模型,并进行了燃速和压强指数的理论计算。结果表明,几乎100%的计算结果都在实验值的±10%范围内。这说明所建立的模型基本合理,编制的NEPE类推进剂燃速计算程序基本可行。  相似文献   

2.
复合固体推进剂属于高填充比颗粒类复合材料,氧化剂和金属颗粒在基体中的随机分布使其在细观尺度具有非均质的特点。从细观尺度研究固体推进剂燃烧及力学性能时,必须考虑颗粒级配、空间分布和种类等因素的影响。采用分子动力学方法,以硝酸酯增塑聚醚高能复合固体推进剂为研究对象,将固体颗粒模型化为球形,生成其在基体内随机分布的颗粒填充模型。利用Monte-Carlo算法模拟计算颗粒填充模型细观结构的两点概率函数,并研究了颗粒填充体积分数、尺寸与级配等参数对其的影响规律。从统计意义上给出具有各态历经性、统计均匀性和各向同性特点的颗粒填充构型最小周期性代表体元尺寸,可有效减小后续研究的计算量,节约计算成本。所构建的推进剂细观几何构型及对最小周期性代表体元尺寸的计算为后续开展复合固体推进剂细观尺度燃烧、燃面处铝团聚及力学性能数值研究奠定了基础。  相似文献   

3.
本文研究聚氨酯型复合推进剂的力学性能和燃烧性能,给出了提高推进剂力学性能的有效途径,测试了推进剂燃烧性能的基本特征参数,采用光电子能谱(ESCA)对这种复合推进剂的界面作用机理进行了微观探讨.  相似文献   

4.
固体推进剂燃烧转爆轰研究于1986年9月25日在国防科技大学通过鉴定。现代固体火箭发动机装药量很大,发动机尺寸达数米;推进剂的能量也愈来愈高,有些推进剂中还加有高能炸药。人们担心,在推进剂生产、贮存和导弹使用中是否会出现燃烧向爆轰转变的灾难性后果?如何控制和避免这种现象?必须从实验和理论上进行研究。因此,该课题是固体推进剂技术与强动载荷技术领域中一项重要的研究课题。  相似文献   

5.
硝酸酯类产品包括硝酸异辛酯、硝酸异丙酯、硝酸丙酯、硝酸丁酯、硝酸戊酯等,是发射药、推进剂产品的主要成分之一。酸度的检验是判断产品安定性合格与否的主要指标,其酸度值的高低直接影响产品的安定性、储存性,顾客要求测定产品的酸度含量。然而,迄今为止,上述硝酸酯类产品尚无酸值测定方法。文章系统介绍硝酸酯类产品酸度测定方法技术攻关并获得成功的过程。  相似文献   

6.
氧化铅(工业名为黄丹)作为推进剂中常见的燃烧催化剂,对提高与保证双基系固体推进剂的燃烧性能与弹道性能具有举足轻重的作用。而起燃烧稳定作用的碳酸钙则保证了火箭(导弹)飞行中的正常燃烧。由于这2种化工原料的这一重要性,因而在推进剂生产中无可置疑地被列为关键(重要)原材料。在投入生产前,它们必须经过严格的检验。而检验的依据就是GB 3677-83(89)《黄丹》和行业标准HG 2226-91《工业沉淀碳酸钙》,其  相似文献   

7.
以气氧/煤油作为推进剂对火箭发动机进行流量连续调节试验,研究火箭发动机连续变工况过程中的燃烧特性。火箭发动机通过可调气蚀文氏管连续调节煤油流量。试验在富燃工况(混合比0.405~0.690)下成功点火,并实现了混合比、燃气总流量连续调节。试验发现流量连续调节过程中,当混合比小于0.535时,燃烧室压力随煤油流量减小而增大;当混合比大于0.535时,燃烧室压力随煤油流量减小而减小。同时,特征速度和燃烧效率随混合比增大而增大,并且混合比小于0.535时特征速度、燃烧效率增大的速率大于混合比大于0.535时的速率。研究表明推进剂流量与燃烧效率同时影响燃烧室压力。当混合比小于0.535时,燃烧效率的影响占优;混合比大于0.535时,推进剂流量影响占优。  相似文献   

8.
1.引言吉纳是一种炸药,学名为 N—硝基二乙醇胺二硝酸酯,是制造发射药和推进剂的主要原料之一,工业吉纳以前一直用熔点作验收指标,虽然熔点与纯度相关,但用熔点来验收吉纳不能完全反映产品质量的优劣,致使工业吉纳质量差异较大,导致发射药和推进剂质量的波动而影响武器性能,为了实现用纯度来表明吉纳产品质量的优劣,以保证发射药、推进剂质量的可靠性,就要求我们研制  相似文献   

9.
一、引言液体推进剂火箭发动机的喷雾器(又叫喷咀)是组织液体推进剂火箭发动机燃烧过程很重要的元件。它的性能的好坏,直接影响到燃烧效率的高低以及燃烧室的尺寸和重量等指标。因此,人们总是希望能够设计出高性能的喷雾器以保证能够得到高性能的燃烧器。  相似文献   

10.
随着我国军事装备的现代化发展,高能混合炸药及高能推进剂对高能单质炸药的使用规格提出了更高的要求。装药试验及使用证明,超细粉体高能炸药能够显著改善装药的综合性能,同时可有效提高炸药的爆燃性能,因此,对炸药粒度指标的要求已趋向微细化、超细化。我国正在进行N-15的推进剂性能改进研究项目,对HMX的粒度及粒度分布已规定具体的控制指标,目前正在深化研磨法工艺研究试验。由此可见,高能炸药的超细化已逐步形成一项新型产业,超细化工艺的升华改进势在必行。  相似文献   

11.
《防务技术》2014,10(2):92-100
Cellulose acetate nitrate (CAN) was used as an insensitive energetic binder to improve the insensitive munitions (IM) properties of gun propellants to replace the M1 propellant used in 105 mm artillery charges. CAN contains the energetic nitro groups found in nitrocellulose (NC), but also acetyl functionalities, which lowered the polymer's sensitivity to heat and shock, and therefore improved its IM properties relative to NC. The formulation, development and small-scale characterization testing of several CAN-based propellants were done. The formulations, using insensitive energetic solid fillers and high-nitrogen modifiers in place of nitramine were completed. The small scale characterization testing, such as closed bomb testing, small scale sensitivity, thermal stability, and chemical compatibility were done. The mechanical response of the propellants under high-rate uni-axial compression at, hot, cold, and ambient temperatures were also completed. Critical diameter testing, hot fragment conductive ignition (HFCI) tests were done to evaluate the propellants' responses to thermal and shock stimuli. Utilizing the propellant chemical composition, theoretical predictions of erosivity were completed. All the small scale test results were utilized to down-select the promising CAN based formulations for large scale demonstration testing such as the ballistic performance and fragment impact testing in the 105 mm M67 artillery charge configurations. The test results completed in the small and large scale testing are discussed.  相似文献   

12.
Composite solid propellants (CSPs) have widely been used as main energy source for propelling the rockets in both space and military applications. Internal ballistic parameters of rockets like characteristic exhaust velocity, specific impulse, thrust, burning rate etc., are measured to assess and control the performance of rocket motors. The burn rate of solid propellants has been considered as most vital parameter for design of solid rocket motors to meet specific mission requirements. The burning rate of solid propellants can be tailored by using different constituents, extent of oxidizer loading and its particle size and more commonly by incorporating suitable combustion catalysts. Various metal oxides (MOs), complexes, metal powders and metal alloys have shown positive catalytic behaviour during the com-bustion of CSPs. These are usually solid-state catalysts that play multiple roles in combustion of CSPs such as reduction in activation energy, enhancement of rate of reaction, modification of sequences in reaction-phase, influence on condensed-phase combustion and participation in combustion process in gas-phase reactions. The application of nanoscale catalysts in CSPs has increased considerably in recent past due to their superior catalytic properties as compared to their bulk-sized counterparts. A large surface-to-volume ratio and quantum size effect of nanocatalysts are considered to be plausible reasons for improving the combustion characteristics of propellants. Several efforts have been made to produce nanoscale combustion catalysts for advanced propellant formulations to improve their energetics. The work done so far is largely scattered. In this review, an effort has been made to introduce various combustion catalysts having at least a metallic entity. Recent developments of nanoscale combustion catalysts with their specific merits are discussed. The combustion chemistry of a typical CSP is briefly discussed for providing a better understanding on role of combustion catalysts in burning rate enhancement. Available information on different types of combustion nanocatalysts is also presented with critical comments.  相似文献   

13.
《防务技术》2014,10(2):101-105
Both heating and solvent-spray methods are used to consolidate the standard grains of double-base oblate sphere propellants plasticized with triethyleneglycol dinitrate (TEGDN) (TEGDN propellants) to high density propellants. The obtained consolidated propellants are deterred and coated with the slow burning multi-layer coating. The maximum compaction density of deterred and coated consolidated propellants can reach up to 1.39 g/cm3. Their mechanic, deconsolidation and combustion performances are tested by the materials test machine, interrupted burning set-up and closed vessel, respectively. The static compression strength of consolidated propellants deterred by multi-layer coating increases significantly to 18 MPa, indicating that they can be applied in most circumstances of charge service. And the samples are easy to deconsolidate in the interrupted burning test. Furthermore, the closed bomb burning curves of the samples indicate a two-stage combustion phenomenon under the condition of certain thickness of coated multi-layers. After the outer deterred multi-layer coating of consolidated samples is finished burning, the inner consolidated propellants continue to burn and breakup into aggregates and grains. The high burning progressivity can be carefully obtained by the smart control of deconsolidation process and duration of consolidated propellants. The preliminary results of consolidated propellants show that a rapid deconsolidation process at higher deconsolidation pressure is presented in the dynamic vivacity curves of closed bomb test. Higher density and higher macro progressivity of consolidated propellants can be obtained by the techniques in this paper.  相似文献   

14.
15.
《防务技术》2019,15(4):615-620
Ammonium nitrate (AN) is promising oxidizer in green propellants. In this work, the physical coating method was improved to modify the surface of ammonium nitrate particles with different surfactant materials to reduce hygroscopicity. Cetylalcohol, stearic acid, stearyl alcohol, palmic acid, lauric acid, stearsmide, tetradecylamine, dodecylamine, and tetradecanol were used as coating surfactant agents. The hygroscopicity was tested for ammonium nitrate with and without coating. Fourier transform infrared (FTIR) and scanning electron microscopy (SEM) were used to characterize the surface of coated and uncoated ammonium nitrate. The mass ratio of coating layer and decline of absorption rate of ammonium nitrate coated by cetylalcohol were 1.00%, and 28.40%, respectively. The results indicate that coating with cetylalcohol surfactant have advantages over the other surfactants in term of low mass ratio of coating layer, and high decline of moisture absorption rate. Thus, cetylalcohol would be a promising coating surfactant material for ammonium nitrate. The idea and approach presented in this study have potential to made hydrophobic layer on the surface of particles to reduce hygroscopicity of AN, and also help the researcher to improving anti-hygroscopicity of ammonium salts.  相似文献   

16.
CALCULATIONOFBURNINGRATECHARACTERISTICSINACCELERATEDFIELDFORSOMEALUMINIZEDSOLIDPROPELLANTSCaoTaiyue(DepartmentofAerospaceTech...  相似文献   

17.
《防务技术》2022,18(10):1914-1921
The monolithic foamed propellants with high densities were prepared by casting and two-step foaming processes. Glycidyl azide polymer (GAP) and isocyanate were used as the binder system and 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (HNIW, CL-20) was employed as the energetic component. The newly designed formulation containing 60 % CL-20 produced a force constant of 1077 J/g and low flame temperature of 2817 K. Two foamed propellants with densities of 1.32 g/cm3 and 1.53 g/cm3 were fabricated by a confined foaming process and examined by closed bomb tests. The results revealed that porosity significantly affects burning performance. A size effect on combustion behaviors was observed for the foamed propellant with 5.56 % porosity, and a double-hump progressive dynamic vivacity curve was obtained. At last, the 30 mm gun test was carried out to demonstrate the interior ballistic performance, and the muzzle velocity increased by 120 m/s at the same maximum chamber pressure when monolithic propellant was added in the charge.  相似文献   

18.
《防务技术》2022,18(11):2023-2033
To improve the performance of solid composite propellants (SCPs) supplemented with ammonium nitrate (AN) as an oxidizer, the incorporation of energetic ingredients such as explosives, energetic binders or catalysts is a common effective approach. For this purpose, polyurethane (PU), a typical inert binder, was mixed with nitrocellulose (NC) as an energetic polymer. Numerous composite solid propellant compositions based on AN and NC-modified polyurethane binder with different NC ratios were prepared. The prepared formulations were characterized using Fourier transform infrared spectroscopy (FTIR), RAMAN spectroscopy, X-ray diffraction (XRD), electron densimetry, thermogravimetric (TG) analysis, and differential scanning calorimetry (DSC). A kinetic study was then performed using the iterative Kissinger-Akahira-Sunose (It-KAS), Flynn-Wall-Ozawa (It-FWO), and non-linear Vyazovkin integral with compensation effect (VYA/CE) methods. The theoretical performances, such as theoretical specific impulse, adiabatic flame temperature, and ideal exhaust gaseous species, were also determined using the NASA Lewis Code, Chemical Equilibrium with Application (CEA). Spectroscopic examinations revealed the existence of NC and full polymerization of PU in the prepared propellants. According to density tests, the density of the propellant increases as the nitrocellulose component increases. According to the thermal analysis and kinetics study, the increase in NC content catalyzed the thermal decomposition of the AN-based composite solid propellants. Based on the theoretical study, increasing the amount of NC in the propellant increased the specific impulse and, as a result, the overall performance.  相似文献   

19.
定应变作用下NEPE推进剂老化特性及寿命预估研究   总被引:2,自引:0,他引:2  
为考察定应变作用下NEPE推进剂的老化特性,研究了20%定应变作用下NEPE推进剂贮存老化过程中力学性能、凝胶性能和界面性能的变化.研究结果表明:定应变作用下NEPE推进剂在贮存老化过程中最大抗拉强度降低,最大延伸率变化较小,其老化失效主要表现为强度的失效;定应变下NEPE推进剂的凝胶百分数和粘附功随老化时间的延长而降低,NEPE推进剂粘合剂基体的降解断裂和界面的"脱湿"是其主要的老化机理;定应变下NEPE推进剂的力学性能与细观性能的相关性研究表明,最大抗拉强度与凝胶百分数和粘附功存在相关关系,计算了其关系式,建立了由细观性能评估推进剂宏观力学性能的方法;选择最大抗拉强度下降30%时失效,20%定应变下NEPE推进剂的贮存寿命为8.3年.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号