首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
This article proposes two dual‐ascent algorithms and uses each in combination with a primal drop heuristic embedded within a branch and bound framework to solve the uncapacitated production assembly distribution system (i.e., supply chain) design problem, which is formulated as a mixed integer program. Computational results indicate that one approach, which combines primal drop and dual‐ascent heuristics, can solve instances within reasonable time and prescribes solutions with gaps between the primal and dual solution values that are less than 0.15%, an efficacy suiting it for actual large‐scale applications. © 2012 Wiley Periodicals, Inc. Naval Research Logistics, 2013  相似文献   

2.
In networks, there are often more than one sources of capacity. The capacities can be permanently or temporarily owned by the decision maker. Depending on the nature of sources, we identify the permanent capacity, spot market capacity, and contract capacity. We use a scenario tree to model the uncertainty, and build a multi‐stage stochastic integer program that can incorporate multiple sources and multiple types of capacities in a general network. We propose two solution methodologies for the problem. Firstly, we design an asymptotically convergent approximation algorithm. Secondly, we design a cutting plane algorithm based on Benders decomposition to find tight bounds for the problem. The numerical experiments show superb performance of the proposed algorithms compared with commercial software. © 2016 Wiley Periodicals, Inc. Naval Research Logistics 63: 600–614, 2017  相似文献   

3.
We consider the problem of scheduling customer orders in a flow shop with the objective of minimizing the sum of tardiness, earliness (finished goods inventory holding), and intermediate (work‐in‐process) inventory holding costs. We formulate this problem as an integer program, and based on approximate solutions to two different, but closely related, Dantzig‐Wolfe reformulations, we develop heuristics to minimize the total cost. We exploit the duality between Dantzig‐Wolfe reformulation and Lagrangian relaxation to enhance our heuristics. This combined approach enables us to develop two different lower bounds on the optimal integer solution, together with intuitive approaches for obtaining near‐optimal feasible integer solutions. To the best of our knowledge, this is the first paper that applies column generation to a scheduling problem with different types of strongly ????‐hard pricing problems which are solved heuristically. The computational study demonstrates that our algorithms have a significant speed advantage over alternate methods, yield good lower bounds, and generate near‐optimal feasible integer solutions for problem instances with many machines and a realistically large number of jobs. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004.  相似文献   

4.
In the literature two common macroscopic evacuation planning approaches exist: The dynamic network flow approach and the Cell–Transmission–Based approach. Both approaches have advantages and disadvantages. Many efficient solution approaches for the dynamic network flow approach exist so that realistic problem instances can be considered. However, the consideration of (more) realistic aspects (eg, density dependent travel times) results in non‐linear model formulations. The Cell‐Transmission‐Based approach on the other hand considers realistic traffic phenomena like shock waves and traffic congestion, but this approach leads to long computational times for realistic problem instances. In this article, we combine the advantages of both approaches: We consider a Cell‐Transmission‐Based Evacuation Planning Model (CTEPM) and present a network flow formulation that is equivalent to the cell‐based model. Thus, the computational costs of the CTEPM are enormously reduced due to the reformulation and the detailed representation of the traffic flow dynamics is maintained. We investigate the impacts of various evacuation scenario parameters on the evacuation performance and on the computational times in a computational study including 90 realistic instances.  相似文献   

5.
In this paper we propose some non‐greedy heuristics and develop an Augmented‐Neural‐Network (AugNN) formulation for solving the classical open‐shop scheduling problem (OSSP). AugNN is a neural network based meta‐heuristic approach that allows integration of domain‐specific knowledge. The OSSP is framed as a neural network with multiple layers of jobs and machines. Input, output and activation functions are designed to enforce the problem constraints and embed known heuristics to generate a good feasible solution fast. Suitable learning strategies are applied to obtain better neighborhood solutions iteratively. The new heuristics and the AugNN formulation are tested on several benchmark problem instances in the literature and on some new problem instances generated in this study. The results are very competitive with other meta‐heuristic approaches, both in terms of solution quality and computational times. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005.  相似文献   

6.
We study a generalization of the weighted set covering problem where every element needs to be covered multiple times. When no set contains more than two elements, we can solve the problem in polynomial time by solving a corresponding weighted perfect b‐matching problem. In general, we may use a polynomial‐time greedy heuristic similar to the one for the classical weighted set covering problem studied by D.S. Johnson [Approximation algorithms for combinatorial problems, J Comput Syst Sci 9 (1974), 256–278], L. Lovasz [On the ratio of optimal integral and fractional covers, Discrete Math 13 (1975), 383–390], and V. Chvatal [A greedy heuristic for the set‐covering problem, Math Oper Res 4(3) (1979), 233–235] to get an approximate solution for the problem. We find a worst‐case bound for the heuristic similar to that for the classical problem. In addition, we introduce a general type of probability distribution for the population of the problem instances and prove that the greedy heuristic is asymptotically optimal for instances drawn from such a distribution. We also conduct computational studies to compare solutions resulting from running the heuristic and from running the commercial integer programming solver CPLEX on problem instances drawn from a more specific type of distribution. The results clearly exemplify benefits of using the greedy heuristic when problem instances are large. © 2003 Wiley Periodicals, Inc. Naval Research Logistics, 2005  相似文献   

7.
Stochastic network design is fundamental to transportation and logistic problems in practice, yet faces new modeling and computational challenges resulted from heterogeneous sources of uncertainties and their unknown distributions given limited data. In this article, we design arcs in a network to optimize the cost of single‐commodity flows under random demand and arc disruptions. We minimize the network design cost plus cost associated with network performance under uncertainty evaluated by two schemes. The first scheme restricts demand and arc capacities in budgeted uncertainty sets and minimizes the worst‐case cost of supply generation and network flows for any possible realizations. The second scheme generates a finite set of samples from statistical information (e.g., moments) of data and minimizes the expected cost of supplies and flows, for which we bound the worst‐case cost using budgeted uncertainty sets. We develop cutting‐plane algorithms for solving the mixed‐integer nonlinear programming reformulations of the problem under the two schemes. We compare the computational efficacy of different approaches and analyze the results by testing diverse instances of random and real‐world networks. © 2017 Wiley Periodicals, Inc. Naval Research Logistics 64: 154–173, 2017  相似文献   

8.
We consider the problem of placing sensors across some area of interest. The sensors must be placed so that they cover a fixed set of targets in the region, and should be deployed in a manner that allows sensors to communicate with one another. In particular, there exists a measure of communication effectiveness for each sensor pair, which is determined by a concave function of distance between the sensors. Complicating the sensor location problem are uncertainties related to sensor placement, for example, as caused by drifting due to air or water currents to which the sensors may be subjected. Our problem thus seeks to maximize a metric regarding intrasensor communication effectiveness, subject to the condition that all targets must be covered by some sensor, where sensor drift occurs according to a robust (worst‐case) mechanism. We formulate an approximation approach and develop a cutting‐plane algorithm to solve this problem, comparing the effectiveness of two different classes of inequalities. © 2015 Wiley Periodicals, Inc. Naval Research Logistics 62: 582–594, 2015  相似文献   

9.
In this article, we consider a multi‐product closed‐loop supply chain network design problem where we locate collection centers and remanufacturing facilities while coordinating the forward and reverse flows in the network so as to minimize the processing, transportation, and fixed location costs. The problem of interest is motivated by the practice of an original equipment manufacturer in the automotive industry that provides service parts for vehicle maintenance and repair. We provide an effective problem formulation that is amenable to efficient Benders reformulation and an exact solution approach. More specifically, we develop an efficient dual solution approach to generate strong Benders cuts, and, in addition to the classical single Benders cut approach, we propose three different approaches for adding multiple Benders cuts. These cuts are obtained via dual problem disaggregation based either on the forward and reverse flows, or the products, or both. We present computational results which illustrate the superior performance of the proposed solution methodology with multiple Benders cuts in comparison to the branch‐and‐cut approach as well as the traditional Benders decomposition approach with a single cut. In particular, we observe that the use of multiple Benders cuts generates stronger lower bounds and promotes faster convergence to optimality. We also observe that if the model parameters are such that the different costs are not balanced, but, rather, are biased towards one of the major cost categories (processing, transportation or fixed location costs), the time required to obtain the optimal solution decreases considerably when using the proposed solution methodology as well as the branch‐and‐cut approach. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   

10.
We study a multi‐item capacitated lot‐sizing problem with setup times and pricing (CLSTP) over a finite and discrete planning horizon. In this class of problems, the demand for each independent item in each time period is affected by pricing decisions. The corresponding demands are then satisfied through production in a single capacitated facility or from inventory, and the goal is to set prices and determine a production plan that maximizes total profit. In contrast with many traditional lot‐sizing problems with fixed demands, we cannot, without loss of generality, restrict ourselves to instances without initial inventories, which greatly complicates the analysis of the CLSTP. We develop two alternative Dantzig–Wolfe decomposition formulations of the problem, and propose to solve their relaxations using column generation and the overall problem using branch‐and‐price. The associated pricing problem is studied under both dynamic and static pricing strategies. Through a computational study, we analyze both the efficacy of our algorithms and the benefits of allowing item prices to vary over time. © 2009 Wiley Periodicals, Inc. Naval Research Logistics, 2010  相似文献   

11.
Lot splitting is a new approach for improving productivity by dividing production lots into sublots. This approach enables accelerating production flow, reducing lead‐time and increasing the utilization of organization resources. Most of the lot splitting models in the literature have addressed a single objective problem, usually the makespan or flowtime objectives. Simultaneous minimization of these two objectives has rarely been addressed in the literature despite of its high relevancy to most industrial environments. This work aims at solving a multiobjective lot splitting problem for multiple products in a flowshop environment. Tight mixed‐integer linear programming (MILP) formulations for minimizing the makespan and flowtime are presented. Then, the MinMax solution, which takes both objectives into consideration, is defined and suggested as an alternative objective. By solving the MILP model, it was found that minimizing one objective results in an average loss of about 15% in the other objective. The MinMax solution, on the other hand, results in an average loss of 4.6% from the furthest objective and 2.5% from the closest objective. © 2010 Wiley Periodicals, Inc. Naval Research Logistics, 2010  相似文献   

12.
We study a stochastic scenario‐based facility location problem arising in situations when facilities must first be located, then activated in a particular scenario before they can be used to satisfy scenario demands. Unlike typical facility location problems, fixed charges arise in the initial location of the facilities, and then in the activation of located facilities. The first‐stage variables in our problem are the traditional binary facility‐location variables, whereas the second‐stage variables involve a mix of binary facility‐activation variables and continuous flow variables. Benders decomposition is not applicable for these problems due to the presence of the second‐stage integer activation variables. Instead, we derive cutting planes tailored to the problem under investigation from recourse solution data. These cutting planes are derived by solving a series of specialized shortest path problems based on a modified residual graph from the recourse solution, and are tighter than the general cuts established by Laporte and Louveaux for two‐stage binary programming problems. We demonstrate the computational efficacy of our approach on a variety of randomly generated test problems. © 2010 Wiley Periodicals, Inc. Naval Research Logistics, 2010  相似文献   

13.
We study a component inventory planning problem in an assemble‐to‐order environment faced by many contract manufacturers in which both quick delivery and efficient management of component inventory are crucial for the manufacturers to achieve profitability in a highly competitive market. Extending a recent study in a similar problem setting by the same authors, we analyze an optimization model for determining the optimal component stocking decision for a contract manufacturer facing an uncertain future demand, where product price depends on the delivery times. In contrast to our earlier work, this paper considers the situation where the contract manufacturer needs to deliver the full order quantity in one single shipment. This delivery requirement is appropriate for many industries, such as the garment and toy industries, where the economies of scale in transportation is essential. We develop efficient solution procedures for solving this optimization problem. We use our model results to illustrate how the different model parameters affect the optimal solution. We also compare the results under this full‐shipment model with those from our earlier work that allows for multiple partial shipments. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   

14.
The machine scheduling literature does not consider the issue of tool change. The parallel literature on tool management addresses this issue but assumes that the change is due only to part mix. In practice, however, a tool change is caused most frequently by tool wear. That is why we consider here the problem of scheduling a set of jobs on a single CNC machine where the cutting tool is subject to wear; our objective is to minimize the total completion time. We first describe the problem and discuss its peculiarities. After briefly reviewing available theoretical results, we then go on to provide a mixed 0–1 linear programming model for the exact solution of the problem; this is useful in solving problem instances with up to 20 jobs and has been used in our computational study. As our main contribution, we next propose a number of heuristic algorithms based on simple dispatch rules and generic search. We then discuss the results of a computational study where the performance of the various heuristics is tested; we note that the well‐known SPT rule remains good when the tool change time is small but deteriorates as this time increases and further that the proposed algorithms promise significant improvement over the SPT rule. © 2002 Wiley Periodicals, Inc. Naval Research Logistics, 2003  相似文献   

15.
This article examines a problem faced by a firm procuring a material input or good from a set of suppliers. The cost to procure the material from any given supplier is concave in the amount ordered from the supplier, up to a supplier‐specific capacity limit. This NP‐hard problem is further complicated by the observation that capacities are often uncertain in practice, due for instance to production shortages at the suppliers, or competition from other firms. We accommodate this uncertainty in a worst‐case (robust) fashion by modeling an adversarial entity (which we call the “follower”) with a limited procurement budget. The follower reduces supplier capacity to maximize the minimum cost required for our firm to procure its required goods. To guard against uncertainty, the firm can “protect” any supplier at a cost (e.g., by signing a contract with the supplier that guarantees supply availability, or investing in machine upgrades that guarantee the supplier's ability to produce goods at a desired level), ensuring that the anticipated capacity of that supplier will indeed be available. The problem we consider is thus a three‐stage game in which the firm first chooses which suppliers' capacities to protect, the follower acts next to reduce capacity from unprotected suppliers, and the firm then satisfies its demand using the remaining capacity. We formulate a three‐stage mixed‐integer program that is well‐suited to decomposition techniques and develop an effective cutting‐plane algorithm for its solution. The corresponding algorithmic approach solves a sequence of scaled and relaxed problem instances, which enables solving problems having much larger data values when compared to standard techniques. © 2013 Wiley Periodicals, Inc. Naval Research Logistics, 2013  相似文献   

16.
Graph association is the problem of merging many graphs that collectively describe a set of possibly repetitive entities and relationships into a single graph that contains unique entities and relationships. As a form of data association, graph association can be used to identify when two sensors are observing the same object so information from both sensors can be combined and analyzed in a meaningful and consistent way. Graph association between two graphs is related to the problem of graph matching, and between multiple graphs it is related to the common labeling of a graph set (also known as multiple graph matching) problem. This article contribution is to formulate graph association as a binary linear program and introduce a heuristic for solving multiple graph association using a Lagrangian relaxation approach to address issues with between‐graph transitivity requirements. The algorithms are tested on a representative dataset. The developed model formulation was found to accurately solve the graph association problem. Furthermore, the Lagrangian heuristic was found to solve the developed model within 3% of optimal on many problem instances, and found better solutions to large problems than is possible by directly using CPLEX. © 2013 Wiley Periodicals, Inc. Naval Research Logistics, 2013  相似文献   

17.
We consider an expansion planning problem for Waste‐to‐Energy (WtE) systems facing uncertainty in future waste supplies. The WtE expansion plans are regarded as strategic, long term decisions, while the waste distribution and treatment are medium to short term operational decisions which can adapt to the actual waste collected. We propose a prediction set uncertainty model which integrates a set of waste generation forecasts and is constructed based on user‐specified levels of forecasting errors. Next, we use the prediction sets for WtE expansion scenario analysis. More specifically, for a given WtE expansion plan, the guaranteed net present value (NPV) is evaluated by computing an extreme value forecast trajectory of future waste generation from the prediction set that minimizes the maximum NPV of the WtE project. This problem is essentially a multiple stage min‐max dynamic optimization problem. By exploiting the structure of the WtE problem, we show this is equivalent to a simpler min‐max optimization problem, which can be further transformed into a single mixed‐integer linear program. Furthermore, we extend the model to optimize the guaranteed NPV by searching over the set of all feasible expansion scenarios, and show that this can be solved by an exact cutting plane approach. We also propose a heuristic based on a constant proportion distribution rule for the WtE expansion optimization model, which reduces the problem into a moderate size mixed‐integer program. Finally, our computational studies demonstrate that our proposed expansion model solutions are very stable and competitive in performance compared to scenario tree approaches. © 2016 Wiley Periodicals, Inc. Naval Research Logistics 63: 47–70, 2016  相似文献   

18.
The resource‐constrained project scheduling problem (RCPSP) consists of a set of non‐preemptive activities that follow precedence relationship and consume resources. Under the limited amount of the resources, the objective of RCPSP is to find a schedule of the activities to minimize the project makespan. This article presents a new genetic algorithm (GA) by incorporating a local search strategy in GA operators. The local search strategy improves the efficiency of searching the solution space while keeping the randomness of the GA approach. Extensive numerical experiments show that the proposed GA with neighborhood search works well regarding solution quality and computational time compared with existing algorithms in the RCPSP literature, especially for the instances with a large number of activities. © 2011 Wiley Periodicals, Inc. Naval Research Logistics, 2011  相似文献   

19.
Motivated by some practical applications, we study a new integrated loading and transportation scheduling problem. Given a set of jobs, a single crane is available to load jobs, one by one, onto semitrailers with a given capacity. Loaded semitrailers are assigned to tractors for transportation tasks. Subject to limited resources (crane, semitrailers, and tractors), the problem is to determine (1) an assignment of jobs to semitrailers for loading tasks, (2) a sequence for the crane to load jobs onto semitrailers, (3) an assignment of loaded semitrailers to tractors for transportation tasks, and (4) a transportation schedule of assigned tractors such that the completion time of the last transportation task is minimized. We first formulate the problem as a mixed integer linear programming model (MILPM) and prove that the problem is strongly NP‐hard. Then, optimality properties are provided which are useful in establishing an improved MILPM and designing solution algorithms. We develop a constructive heuristic, two LP‐based heuristics, and a recovering beam search heuristic to solve this problem. An improved procedure for solutions by heuristics is also presented. Furthermore, two branch‐and‐bound (B&B) algorithms with two different lower bounds are developed to solve the problem to optimality. Finally, computational experiments using both real data and randomly generated data demonstrate that our heuristics are highly efficient and effective. In terms of computational time and the number of instances solved to optimality in a time limit, the B&B algorithms are better than solving the MILPM. © 2015 Wiley Periodicals, Inc. Naval Research Logistics 62: 416–433, 2015  相似文献   

20.
In this article, we study deterministic dynamic lot‐sizing problems with a service‐level constraint on the total number of periods in which backlogs can occur over a finite planning horizon. We give a natural mixed integer programming formulation for the single item problem (LS‐SL‐I) and study the structure of its solution. We show that an optimal solution to this problem can be found in \begin{align*}\mathcal O(n^2\kappa)\end{align*} time, where n is the planning horizon and \begin{align*}\kappa=\mathcal O(n)\end{align*} is the maximum number of periods in which demand can be backlogged. Using the proposed shortest path algorithms, we develop alternative tight extended formulations for LS‐SL‐I and one of its relaxations, which we refer to as uncapacitated lot sizing with setups for stocks and backlogs. {We show that this relaxation also appears as a substructure in a lot‐sizing problem which limits the total amount of a period's demand met from a later period, across all periods.} We report computational results that compare the natural and extended formulations on multi‐item service‐level constrained instances. © 2013 Wiley Periodicals, Inc. Naval Research Logistics, 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号