首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《防务技术》2022,18(11):1979-1999
A quasi-isentropic study on the process of driving a cylinder with aluminized explosives was carried out to examine the influence of the aluminum (Al) reaction rate on cylinder expansion and the physical parameters of the detonation products. Based on the proposed quasi-isentropic hypothesis and relevant isentropic theories, the characteristic lines of aluminized explosives driving a cylinder were analyzed, and a quasi-isentropic model was established. This model includes the variation of the cylinder wall velocity and the physical parameters of the detonation products with the Al reaction degree. Using previously reported experimental results, the quasi-isentropic model was verified to be applicative and accurate. This model was used to calculate the physical parameters for cylinder experiments with aluminized cyclotrimethylenetrinitramine explosives with 15.0 % and 30.0 % Al content. The results show that this quasi-isentropic model can be used not only to calculate the cylinder expansion rule or Al reaction degree, but also to calculate the physical parameters of the detonation products in the process of cylinder expansion. For explosives with 15.0 % and 30.0 % Al, 24.3 % and 18.5 % of the Al was found to have reacted at 33.9 μs and 34.0 μs, respectively. The difference in Al content results in different reaction intensity, occurrence time, and duration of two forms of reaction (diffusion and kinetic) between the Al powder and the detonation products; the post-detonation burning reaction between the Al powder and the detonation products prolongs the positive pressure action time, resulting in a continuous rise in temperature after detonation.  相似文献   

2.
Nano-sized aluminum(Nano-Al)powders hold promise in enhancing the total energy of explosives and the metal acceleration ability at the same time.However,the near-detonation zone effects of reaction between Nano-Al with detonation products remain unclear.In this study,the overall reaction process of 170 nm Al with RDX explosive and its effect on detonation characteristics,detonation reaction zone,and the metal acceleration ability were comprehensively investigated through a variety of experiments such as the detonation velocity test,detonation pressure test,explosive/window interface velocity test and confined plate push test using high-resolution laser interferometry.Lithium fluoride(LiF),which has an inert behavior during the explosion,was used as a control to compare the contribution of the reaction of aluminum.A thermochemical approach that took into account the reactivity of aluminum and ensuing detonation products was adopted to calculate the additional energy release by afterburn.Combining the numerical simulations based on the calculated afterburn energy and experimental results,the param-eters in the detonation equation of state describing the Nano-Al reaction characteristics were calibrated.This study found that when the 170 nm Al content is from 0%to 15%,every 5%increase of aluminum resulted in about a 1.3%decrease in detonation velocity.Manganin pressure gauge measurement showed no significant enhancement in detonation pressure.The detonation reaction time and reaction zone length of RDX/Al/wax/80/15/5 explosive is 64 ns and 0.47 mm,which is respectively 14%and 8%higher than that of RDX/wax/95/5 explosive(57 ns and 0.39 mm).Explosive/window interface velocity curves show that 170 nm Al mainly reacted with the RDX detonation products after the detonation front.For the recording time of about 10 μs throughout the plate push test duration,the maximum plate velocity and plate acceleration time accelerated by RDX/Al/wax/80/15/5 explosive is 12%and 2.9 μs higher than that of RDX/LiF/wax/80/15/5,respectively,indicating that the aluminum reaction energy significantly increased the metal acceleration time and ability of the explosive.Numerical simulations with JWLM explosive equation of state show that when the detonation products expanded to 2 times the initial volume,over 80%of the aluminum had reacted,implying very high reactivity.These results are significant in attaining a clear understanding of the reaction mechanism of Nano-Al in the development of aluminized explosives.  相似文献   

3.
《防务技术》2022,18(9):1552-1562
To further explore the damage characteristics and impact response of the shaped charge to the solid rocket engine (SRE) in storage or transportation, protective armor was designed and the shelled charges model (SCM)/SRE with protective armor impacting by shaped charge tests were conducted. Air overpressures at 5 locations and axial acceleration caused by the explosion were measured, and the experimental results were compared with two air overpressure curves of propellant detonation obtained by related scholars. Afterwards, the finite element software AUTODYN was used to simulate the SCM impacted process and SRE detonation results. The penetration process and the formation cause of damage were analyzed. The detonation performance of TNT, reference propellant, and the propellant used in this experiment was compared. The axial acceleration caused by the explosion was also analyzed. By comprehensive comparison, the energy released by the detonation of this propellant is larger, and the HMX or Al particles contained in this propellant are more than the reference propellant, with a TNT equivalent of 1.168–1.196. Finally, advanced protection armor suggestions were proposed based on the theory of woven fabric rubber composite armor (WFRCA).  相似文献   

4.
In order to improve the energy level of fuel air explosive(FAE) with delayed secondary igniters, high energetic metal powders were added to liquid fuels mainly composed of ether and isopropyl nitrate. Metal powders' explosive properties and reaction mechanisms in FAE were studied by high-speed video, pressure test system, and infrared thermal imager. The results show that compared with pure liquid fuels, the shock wave overpressure, maximum surface fireball temperature and high temperature duration of the mixture were significantly increased after adding high energetic metal powder. The overpressure values of the liquid-solid mixture at all measuring points were higher than that of the pure liquid fuels. And the maximum temperature of the fireball was up to 1700 ℃, which was higher than that of the pure liquid fuels. After replacing 30%of aluminum powder with boron or magnesium hydride, the shock wave pressure of the mixture was further increased. The high heat of combustion of boron and the hydrogen released by magnesium hydride could effectively increase the blast effect of the mixture. The improvement of the explosion performance of boron was better than magnesium hydride. It shows that adding high energetic metal powder to liquid fuels can effectively improve the explosion performance of FAE.  相似文献   

5.
In this paper, the kerosene/air rotating detonation engines(RDE) are numerically investigated, and the emphasis is laid on the effects of total pressures and equivalence ratios on the operation characteristics of RDE including the initiation, instabilities, and propulsive performance. A hybrid MPI + OpenMP parallel computing model is applied and it is proved to be able to obtain a more effective parallel performance on high performance computing(HPC) systems. A series of cases with the total pressure of 1 MPa, 1.5 MPa, 2 MPa, and the equivalence ratio of 0.9, 1, 1.4 are simulated. On one hand, the total pressure shows a significant impact on the instabilities of rotating detonation waves. The instability phenomenon is observed in cases with low total pressure (1 MPa) and weakened with the increase of the total pressure. The total pressure has a small impact on the detonation wave velocity and the specific impulse. On the other hand, the equivalence ratio shows a negligible influence on the instabilities, while it affects the ignition process and accounts for the detonation velocity deficit. It is more difficult to initiate rotating detonation waves directly in the lean fuel operation condition. Little difference was observed in the thrust with different equivalence ratios of 0.9, 1, and 1.4. The highest specific impulse was obtained in the lean fuel cases, which is around 2700 s. The findings could provide insights into the understanding of the operation characteristics of kerosene/air RDE.  相似文献   

6.
《防务技术》2022,18(10):1852-1862
To improve the thermal properties of aluminum (Al) in the energetic system, a coated structure with ammonium perchlorate (AP) was prepared by a facile approach. And N, N-Dimethylformamide (DMF) was chosen as an ideal solvent based on heterogeneous nucleation theory and molecular dynamics simulation. This coated structure could enlarge the contact area and improve the reaction environment to enhance the thermal properties. The addition of AP could accelerate oxidation temperature of Al with around 17.5 °C. And the heat release of 85@15 composition rises to 26.13 kJ/g and the reaction degree is 97.6% with higher peak pressure (254.6 kPa) and rise rate (1.397 MPa/s). An ideal ratio with 15 wt% AP was probed primarily. The high energy laser-induced shockwave experiment was utilized to simulate the reaction behavior in hot field. And the larger activated mixture of coated powder could release more energy to promote the growth of shockwave with higher speed up to 518.7 ± 55.9 m/s. In conclusion, 85@15 composition is expected to be applied in energetic system as a novel metal fuel.  相似文献   

7.
Barbara 《防务技术》2021,17(5):1740-1752
Ammonium nitrate and fuel oil (ANFO) based explosive is a classic example of non-ideal high explosives. Its detonation is characterized by a strong dependence of detonation parameters on explosive charge diameter, presence and characteristics of confinement, as well as incomplete consumption of explosive at the sonic point.In this work we propose a detonation model based on the Wood-Kirkwood (WK) theory coupled with the thermochemical code EXPLO5 and supplemented with reaction rate models. Our objective is to analyze the validity of the model for highly non-ideal ANFO explosives, with emphasis on effect of reaction rate models.It was found that both single-step and two-step pressure-based models can be calibrated to reproduce experimental detonation velocity-charge radius data of ANFO at radii significantly above the failure radius (i.e. for D/Did > ∼0.6). Single-step pressure-based model, with the pressure exponent equal to 1.4, proved to be the most accurate, even in the vicinity of the failure radius. The impact of the rate models is most evident on temporal (and spatial) distribution of flow parameters in detonation driving zone, especially when it comes to the conversion and width of detonation driving zone.  相似文献   

8.
《防务技术》2022,18(9):1578-1588
In this paper, the reaction characteristic and its application in shaped charge warhead of a novel reactive material, which introduced copper (Cu) and plumbum (Pb) into traditional polytetrafluoroethylene/aluminum (PTFE/Al), are studied. The thermal analysis and chemical reaction behavior of the PTFE/Al/Cu/Pb mixture are investigated by Differential Scanning Calorimetry (DSC),Thermo-gravimetry (TG), and X-ray Diffraction (XRD) techniques. Then, the shaped charge liners with PTFE/Al/Cu/Pb reactive materials are fabricated, and the X-ray experiments show that they could form reactive jets with excellent performance under the detonation effects of the shaped charge. Based on that, the penetration experiments of shaped charge with PTFE/Al/Cu/Pb reactive liner against steel plates are carried out, and the results demonstrate that the PTFE/Al/Cu/Pb reactive jets could produce a deeper penetration depth compared to the traditional PTFE/Al reactive jets. Meanwhile, the PTFE/Al/Cu/Pb reactive jets also show significant inner-blast effects, leading to dramatically cracking or fragmentation behavior of the penetrated steel plates. This new PTFE/Al/Cu/Pb reactive liner shaped charge presents enhanced penetration behavior for steel targets that incorporates the penetration capability of a high-density and ductility jet, and the chemical energy release of PTFE-matrix reactive materials.  相似文献   

9.
《防务技术》2015,11(3)
The effect of hot-humid exposure(i.e., 40 C and 98% R.H.) on the quasi-static strength of the adhesive-bonded aluminum alloys was studied. Test results show that the hot-humid exposure leads to the significant decrease in the joint strength and the change of the failure mode from a mixed cohesive and adhesive failure with cohesive failure being dominant to adhesive failure being dominant. Careful analyses of the results reveal that the physical bond is likely responsible for the bond adhesion between L adhesive and aluminum substrates. The reduction in joint strength and the change of the failure mode resulted from the degradation in bond adhesion, which was primarily attributed to the corrosion of aluminum substrate. In addition, the elevated temperature exposure significantly accelerated the corrosion reaction of aluminum, which accelerated the degradation in joint strength.  相似文献   

10.
粉尘爆炸事故预防及其扑救对策研究   总被引:1,自引:0,他引:1  
可燃粉尘爆炸是危害人类生产生活的一类主要事故。要有效预防粉尘爆炸事故造成的危害,准确掌握其爆炸原理,研究其爆炸特性是非常必要的。探讨了粉尘爆炸的基本特征,研究了粉尘爆炸的条件和机理及影响粉尘爆炸的因素。详细论述了粉尘爆炸火灾的特点及其危害。研究了预防粉尘爆炸及降低粉尘爆炸破坏作用的对策,并指出了在灭火战斗中应注意的问题。  相似文献   

11.
To study the thermal decomposition of Al/ZrH2/PTFE with different Al particle size as well as mechanical strength and impact sensitivity under medium and low strain rates, molding-vacuum sintering was adopted to prepare four groups of power materials and cylindrical specimens with different Al particle size. The active decomposition temperature of ZrH2 was obtained by TG-DSC, and the quasi-static me-chanics/reaction characteristics as well as the impact sensitivity of the specimen were studied respec-tively by quasi-static compression and drop-hammer test. The results show that the yield strength of the material decreased with the increase of the Al particle size, while the compressive strength, failure strain and toughness increased first and then decreased, which reached the maximum values of 116.61 MPa, 191%, and 119.9 MJ/m respectively when the Al particle size is 12—14μm because of particle size grading. The specimens with the highest strength and toughness formed circumferential open cracks and reacted partly when pressed. Those with developmental cracks formed inside did not react. It is considered that fracture of specimens first triggered initial reaction between Al and PTFE to release an amount of heat. Then ZrH2 was activated and decomposed, and participated in subsequent reaction to generate ZrC. The impact sensitivity of the specimens decreased with the increase of Al particle size.  相似文献   

12.
In this paper, the ballistic impact experiments, including impact test chamber and impact double-spaced plates, were conducted to study the reaction behaviors of a novel functionally graded reactive material (FGRM), which was composed of polytetrafluoroethylene/aluminum (PTFE/Al) and PTFE/Al/bismuth trioxide (Bi2O3). The experiments showed that the impact direction of the FGRM had a significant effect on the reaction. With the same impact velocity, when the first impact material was PTFE/Al/Bi2O3, compared with first impact material PTFE/Al, the FGRM induced higher overpressure in the test chamber and larger damaged area of double-spaced plates. The theoretical model, which considered the shock wave generation and propagation, the effect of the shock wave on reaction efficiency, and penetration behaviors, was developed to analyze the reaction behaviors of the FGRM. The model predicted first impact material of the FGRM with a higher shock impedance was conducive to the reaction of reactive materials. The conclusion of this study provides significant information about the design and application of reactive materials.  相似文献   

13.
《防务技术》2020,16(1):77-87
The effects of metallic material on the penetration resistances of ceramic-metal hybrid structures against vertical long-rod tungsten projectiles were studied by artillery-launched experiments and numerical simulation. Hybrid structures with rectangular cores in transverse orthogonal arrangement and slide-fitting ceramic inserts of zirconia toughened alumina prisms were fabricated with titanium alloy TC4 (Ti6Al4V), AISI 4340 steel and 7075 aluminum alloy panels, respectively. The results showed that the hybrid structure of Ti6Al4V exhibited the highest penetration resistance, followed by that of 7075 aluminum alloy with the same area density. The penetration resistance of the hybrid structure of AISI 4340 steel was the lowest. The underlying mechanisms showed that the metallic material of a ceramic-metal hybrid structure can directly affect its energy absorption from the impact projectile, which further affects its penetration resistance. Different metallic frames exhibited different failure characteristics, resulting in different constraint conditions or support conditions for ceramic prisms. The high penetration resistance of the Ti6Al4V hybrid structure was due to its stronger back support to ceramic prisms as compared with that of AISI 4340 steel hybrid structure, and better constraint condition for ceramic prisms by metallic webs as compared with that of 7075 aluminum alloy hybrid structure. The results of mass efficiency and thickness efficiency showed that the Ti6Al4V hybrid structure has advantages in reducing both the thickness and the mass of protective structure. In addition, because the ceramic-metal hybrid structures in the present work were heterogeneous, impact position has slight influence on their penetration resistances.  相似文献   

14.
《防务技术》2022,18(9):1538-1545
3-nitro-1,2,4-tri-azol-5-one (NTO) is a high energy insensitive explosive. To study the shock initiation process of NTO-based polymer bonded explosive JEOL-1 (32%octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), 32% NTO, 28% Al and 8% binder system), the cylinder test, the gap experiments and numerical simulation were carried out. Firstly, we got the detonation velocity (7746 m/s) and the parameters of Jones-Wilkins-Lee (JWL) equation of state (EOS) for detonation product by cylinder test and numerical simulation. Secondly, the Hugoniot curve of unreacted explosive for JEOL-1 was obtained calculating the data of pressure and time at different Lagrangian positions. Then the JWL EOS of unreacted explosive was obtained by utilizing the Hugoniot curve as the reference curve. Finally, we got the pressure growth history of JEOL-1 under shock wave stimulation and the parameters of the ignition and growth reaction rate equation were obtained by the pressure-time curves measured by the shock-initiation gap experiment and numerical simulation. The determined trinomial ignition and growth model (IG model) parameters can be applied to subsequently simulation analysis and design of insensitive ammunition with NTO-based polymer bonded explosive.  相似文献   

15.
Due to the pressure gain combustion characteristics, the rotating detonation combustor (RDC) can enhance thermodynamic cycle efficiency. Therefore, the performance of gas-turbine engine can be further improved with this combustion technology. In the present study, the RDC operation performance with a turbine guide vane (TGV) is experimentally investigated. Hydrogen and air are used as propellants while hydrogen and air mass flow rate are about 16.1 g/s and 500 g/s and the equivalence ratio is about 1.0. A pre-detonator is used to ignite the mixture. High-frequency dynamic pressure transducers and silicon pressure sensors are employed to measure pressure oscillations and static pressure in the combustion chamber. The experimental results show that the steady propagation of rotating detonation wave (RDW) is observed in the combustion chamber and the mean propagation velocity is above 1650 m/s, reaching over 84% of theoretical Chapman-Jouguet detonation velocity. Clockwise and counterclockwise propagation directions of RDW are obtained. For clockwise propagation direction, the static pressure is about 15% higher in the combustor compared with counterclockwise propagation direction, but the RDW dominant frequency is lower. When the oblique shock wave propagates across the TGV, the pressure oscillations reduces significantly. In addition, as the detonation products flow through the TGV, the static pressure drops up to 32% and 43% for clockwise and counterclockwise propagation process respectively.  相似文献   

16.
在真空背景下的实验表明,当微秒量级的强脉冲激光与靶材相互作用时,由于靶材的升华,激光维持爆震波依然存在。爆震波产生的压缩波传入靶内,该应力波的作用是材料破坏的重要因素。而强脉冲激光引起的汽化反冲压力、热应力和烧蚀破坏也是不可忽视的因素。实验还表明,在真空背景下维持爆震波足以将后续激光屏蔽。  相似文献   

17.
《防务技术》2022,18(10):1834-1841
In the study, the two-color pyrometer technique was used to measure the transient temperature field of emulsion explosives with different contents of TiH2 powders. The experimental results showed that the introduction of TiH2 powders could significantly increase the explosion temperature and fireball duration of emulsion explosive. When emulsion explosives were ignited, the average explosion temperature of pure emulsion explosive continuously decreased while emulsion explosives added with TiH2 powders increased at first and then decreased. When the content of TiH2 powders was 6 mass%, the explosion average temperature reached its maximum value of 3095 K, increasing by 43.7% as compared with that of pure emulsion explosive. In addition, the results of air blast experiment and explosion heat test showed that the variation trends of shock wave parameters, explosion heat and theoretical explosion temperature of emulsion explosives with different contents of TiH2 powders were basically consistent with that of explosion temperature measured by the two-color pyrometer technique. In conclusion, the two-color pyrometer technique would be conducive to the formula design of emulsion explosive by understanding the explosion temperature characteristics.  相似文献   

18.
To explore the effect of different positions and number of pyrrolidine bound to the carbon cage on the stabilization effect of fulleropyrrolidine derivatives to nitrocellulose (NC)/nitroglycerine (NG), we synthesized N-(4-methoxy) phenylpyrrolidine-C60 and four different of bis(N-(4-methoxy) phenylpyrrolidine)-C60 compounds through Prato reaction. Their structures were characterized by UV–vis, 1H NMR, 13C NMR, high-resolution mass spectroscopy, and single-crystal X-ray diffraction. Their stabilization effect to NC/NG were investigated using differential scanning calorimetry, methyl violet, vacuum stabilization effect, weight loss, and accelerating rate calorimeter tests. The results indicated these compounds had excellent stabilization effect to NC/NG. The stabilization effect of the fulleropyrrolidine bisadducts to NC/NG is significantly better than that of fulleropyrrolidine monoadduct and C60. Moreover, the position where pyrrolidine binds to fullerene in fulleropyrrolidine bisadducts is different, and its stabilization effect to NC is also different. The stabilization effect order of different bisadduct isomers to nitrocellulose is as follows: e-edge > trans-2> cis-2> trans-3. Electron paramagnetic resonance (EPR) and FT-IR were used to study the stabilization mechanism of fulleropyrrolidine derivatives to NC/NG. The EPR results also show that fulleropyrrolidine bisadducts with different addition sites have different abilities to absorb nitroxide, and their ability is better than that of the monoadduct and C60, which is consistent with the results of stabilization effect performance test.  相似文献   

19.
驱动管中柱状装药爆轰过程的数值模拟   总被引:1,自引:0,他引:1  
数值模拟了爆炸驱动管中柱状装药内爆轰波的传播过程.计算采用欧拉型有限体积方法,炸药及爆轰产物均采用JWL状态方程,空气采用理想气体状态方程,采用"点火-生长"模型计算化学反应速率.计算得到了驱动管内波系结构的发展过程,爆速与经验公式符合得较好.计算表明,驱动管侧壁的压力峰值在800MPa以上,而在管底中心处,由于激波的汇聚,压力峰值高达12.4GPa.  相似文献   

20.
金属泡沫夹芯结构是近年来新出现的一种明显具有结构和功能一体化特点的新型轻质材料,它在临近空间飞行器、航海及汽车等领域有着广阔的应用前景。以以纤维增强复合材料面板、闭孔泡沫铝芯子为特征的复合材料夹芯结构为研究对象,对其在球形压头作用下的压痕响应、损伤模式、变形机制和失效机理进行理论分析和实验研究。研究发现,泡沫铝复合材料夹芯结构的压痕响应是夹芯结构的各个组成部分的响应、相互作用以及压头属性的综合作用结果。泡沫铝复合材料夹芯结构在球压头作用下的损伤模式为基体开裂、纤维断裂、层间分层、泡沫铝的屈服及剪切断裂五种失效模式。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号