首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   239篇
  免费   30篇
  2021年   3篇
  2019年   7篇
  2018年   3篇
  2017年   6篇
  2016年   13篇
  2015年   14篇
  2014年   9篇
  2013年   76篇
  2012年   9篇
  2011年   7篇
  2010年   4篇
  2009年   7篇
  2008年   9篇
  2007年   12篇
  2006年   7篇
  2005年   11篇
  2004年   7篇
  2003年   11篇
  2002年   10篇
  2001年   6篇
  2000年   5篇
  1999年   7篇
  1998年   1篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1989年   2篇
  1986年   2篇
  1985年   2篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1973年   2篇
  1972年   1篇
  1971年   1篇
  1970年   2篇
  1968年   1篇
排序方式: 共有269条查询结果,搜索用时 15 毫秒
21.
In this paper, we derive new families of facet‐defining inequalities for the finite group problem and extreme inequalities for the infinite group problem using approximate lifting. The new valid inequalities for the finite group problem include two‐ and three‐slope facet‐defining inequalities as well as the first family of four‐slope facet‐defining inequalities. The new valid inequalities for the infinite group problem include families of two‐ and three‐slope extreme inequalities. These new inequalities not only illustrate the diversity of strong inequalities for the finite and infinite group problems, but also provide a large variety of new cutting planes for solving integer and mixed‐integer programming problems. © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   
22.
Mean residual life is a useful dynamic characteristic to study reliability of a system. It has been widely considered in the literature not only for single unit systems but also for coherent systems. This article is concerned with the study of mean residual life for a coherent system that consists of multiple types of dependent components. In particular, the survival signature based generalized mixture representation is obtained for the survival function of a coherent system and it is used to evaluate the mean residual life function. Furthermore, two mean residual life functions under different conditional events on components’ lifetimes are also defined and studied.  相似文献   
23.
Today, many products are designed and manufactured to function for a long period of time before they fail. Determining product reliability is a great challenge to manufacturers of highly reliable products with only a relatively short period of time available for internal life testing. In particular, it may be difficult to determine optimal burn‐in parameters and characterize the residual life distribution. A promising alternative is to use data on a quality characteristic (QC) whose degradation over time can be related to product failure. Typically, product failure corresponds to the first passage time of the degradation path beyond a critical value. If degradation paths can be modeled properly, one can predict failure time and determine the life distribution without actually observing failures. In this paper, we first use a Wiener process to describe the continuous degradation path of the quality characteristic of the product. A Wiener process allows nonconstant variance and nonzero correlation among data collected at different time points. We propose a decision rule for classifying a unit as normal or weak, and give an economic model for determining the optimal termination time and other parameters of a burn‐in test. Next, we propose a method for assessing the product's lifetime distribution of the passed units. The proposed methodologies are all based only on the product's initial observed degradation data. Finally, an example of an electronic product, namely contact image scanner (CIS), is used to illustrate the proposed procedure. © 2002 Wiley Periodicals, Inc. Naval Research Logistics, 2003  相似文献   
24.
In this article, the Building Evacuation Problem with Shared Information (BEPSI) is formulated as a mixed integer linear program, where the objective is to determine the set of routes along which to send evacuees (supply) from multiple locations throughout a building (sources) to the exits (sinks) such that the total time until all evacuees reach the exits is minimized. The formulation explicitly incorporates the constraints of shared information in providing online instructions to evacuees, ensuring that evacuees departing from an intermediate or source location at a mutual point in time receive common instructions. Arc travel time and capacity, as well as supply at the nodes, are permitted to vary with time and capacity is assumed to be recaptured over time. The BEPSI is shown to be NP‐hard. An exact technique based on Benders decomposition is proposed for its solution. Computational results from numerical experiments on a real‐world network representing a four‐story building are given. Results of experiments employing Benders cuts generated in solving a given problem instance as initial cuts in addressing an updated problem instance are also provided. © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   
25.
26.
Instead of measuring a Wiener degradation or performance process at predetermined time points to track degradation or performance of a product for estimating its lifetime, we propose to obtain the first‐passage times of the process over certain nonfailure thresholds. Based on only these intermediate data, we obtain the uniformly minimum variance unbiased estimator and uniformly most accurate confidence interval for the mean lifetime. For estimating the lifetime distribution function, we propose a modified maximum likelihood estimator and a new estimator and prove that, by increasing the sample size of the intermediate data, these estimators and the above‐mentioned estimator of the mean lifetime can achieve the same levels of accuracy as the estimators assuming one has failure times. Thus, our method of using only intermediate data is useful for highly reliable products when their failure times are difficult to obtain. Furthermore, we show that the proposed new estimator of the lifetime distribution function is more accurate than the standard and modified maximum likelihood estimators. We also obtain approximate confidence intervals for the lifetime distribution function and its percentiles. Finally, we use light‐emitting diodes as an example to illustrate our method and demonstrate how to validate the Wiener assumption during the testing. © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   
27.
For computing an optimal (Q, R) or kindred inventory policy, the current literature provides mixed signals on whether or when it is safe to approximate a nonnormal lead‐time‐demand (“LTD”) distribution by a normal distribution. The first part of this paper examines this literature critically to justify why the issue warrants further investigations, while the second part presents reliable evidence showing that the system‐cost penalty for using the normal approximation can be quite serious even when the LTD‐distribution's coefficient of variation is quite low—contrary to the prevalent view of the literature. We also identify situations that will most likely lead to large system‐cost penalty. Our results indicate that, given today's technology, it is worthwhile to estimate an LTD‐distribution's shape more accurately and to compute optimal inventory policies using statistical distributions that more accurately reflect the LTD‐distributions' actual shapes. © 2003 Wiley Periodicals, Inc. Naval Research Logistics, 2003  相似文献   
28.
This paper does not present a new result, rather it is meant to illustrate the choice of modelling procedures available to an analyst in a typical inventory control problem. The same “average cost per unit time” expression is developed by three quite different procedures. This variety of approaches, as well as the recounting of the author's chronological efforts to solve the problem, should be of interest to the reader. The specific inventory problem studied is one where the controller of an item is faced with random opportunities for replenishment at a reduced setup cost; the problem is an integral component of the broader problem of inventory control of a group of items whose replenishments are coordinated to reduce the costs of production, procurement, and/or transportation.  相似文献   
29.
In this paper, we extend the inventory lot‐size models to allow for inflation and fluctuating demand (which is more general than constant, increasing, decreasing, and log‐concave demand patterns). We prove that the optimal replenishment schedule not only exists but is also unique. Furthermore, we show that the total cost associated with the inventory system is a convex function of the number of replenishments. Hence, the search for the optimal number of replenishments is simplified to finding a local minimum. Finally, several numerical examples are provided to illustrate the results. © 2001 John Wiley & Sons, Inc. Naval Research Logistics 48: 144–158, 2001  相似文献   
30.
This paper studies a queueing system with a Markov arrival process with marked arrivals and PH‐distribution service times for each type of customer. Customers (regardless of their types) are served on a mixed first‐come‐first‐served (FCFS) and last‐come‐first‐served (LCFS) nonpreemptive basis. That is, when the queue length is N (a positive integer) or less, customers are served on an FCFS basis; otherwise, customers are served on an LCFS basis. The focus is on the stationary distribution of queue strings, busy periods, and waiting times of individual types of customers. A computational approach is developed for computing the stationary distribution of queue strings, the mean of busy period, and the means and variances of waiting times. The relationship between these performance measures and the threshold number N is analyzed in depth numerically. It is found that the variance of the virtual (actual) waiting time of an arbitrary customer can be reduced by increasing N. © 2000 John Wiley & Sons, Inc. Naval Research Logistics 47: 399–421, 2000  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号