首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   307篇
  免费   67篇
  2021年   2篇
  2019年   11篇
  2018年   4篇
  2017年   15篇
  2016年   19篇
  2015年   15篇
  2014年   15篇
  2013年   67篇
  2012年   14篇
  2011年   20篇
  2010年   21篇
  2009年   18篇
  2008年   21篇
  2007年   31篇
  2006年   20篇
  2005年   14篇
  2004年   18篇
  2003年   12篇
  2002年   14篇
  2001年   10篇
  2000年   11篇
  1999年   2篇
排序方式: 共有374条查询结果,搜索用时 15 毫秒
71.
This article studies a min‐max path cover problem, which is to determine a set of paths for k capacitated vehicles to service all the customers in a given weighted graph so that the largest path cost is minimized. The problem has wide applications in vehicle routing, especially when the minimization of the latest service completion time is a critical performance measure. We have analyzed four typical variants of this problem, where the vehicles have either unlimited or limited capacities, and they start from either a given depot or any depot of a given depot set. We have developed approximation algorithms for these four variants, which achieve approximation ratios of max{3 ‐ 2/k,2}, 5, max{5 ‐ 2/k,4}, and 7, respectively. We have also analyzed the approximation hardness of these variants by showing that, unless P = NP , it is impossible for them to achieve approximation ratios less than 4/3, 3/2, 3/2, and 2, respectively. We have further extended the techniques and results developed for this problem to other min‐max vehicle routing problems.© 2010 Wiley Periodicals, Inc. Naval Research Logistics, 2010  相似文献   
72.
Todas information and communication network requires a design that is secure to tampering. Traditional performance measures of reliability and throughput must be supplemented with measures of security. Recognition of an adversary who can inflict damage leads toward a game‐theoretic model. Through such a formulation, guidelines for network designs and improvements are derived. We opt for a design that is most robust to withstand both natural degradation and adversarial attacks. Extensive computational experience with such a model suggests that a Nash‐equilibrium design exists that can withstand the worst possible damage. Most important, the equilibrium is value‐free in that it is stable irrespective of the unit costs associated with reliability vs. capacity improvement and how one wishes to trade between throughput and reliability. This finding helps to pinpoint the most critical components in network design. From a policy standpoint, the model also allows the monetary value of information‐security to be imputed. © 2009 Wiley Periodicals, Inc. Naval Research Logistics, 2009  相似文献   
73.
Finding all nondominated vectors for multi‐objective combinatorial optimization (MOCO) problems is computationally very hard in general. We approximate the nondominated frontiers of MOCO problems by fitting smooth hypersurfaces. For a given problem, we fit the hypersurface using a single nondominated reference vector. We experiment with different types of MOCO problems and demonstrate that in all cases the fitted hypersurfaces approximate all nondominated vectors well. We discuss that such an approximation is useful to find the neighborhood of preferred regions of the nondominated vectors with very little computational effort. Further computational effort can then be spent in the identified region to find the actual nondominated vectors the decision maker will prefer. © 2009 Wiley Periodicals, Inc. Naval Research Logistics, 2009  相似文献   
74.
Environmentally friendly energy resources open a new opportunity to tackle the problem of energy security and climate change arising from wide use of fossil fuels. This paper focuses on optimizing the allocation of the energy generated by the renewable energy system to minimize the total electricity cost for sustainable manufacturing systems under time‐of‐use tariff by clipping the peak demand. A rolling horizon approach is adopted to handle the uncertainty caused by the weather change. A nonlinear mathematical programming model is established for each decision epoch based on the predicted energy generation and the probability distribution of power demand in the manufacturing plant. The objective function of the model is shown to be convex, Lipchitz‐continuous, and subdifferentiable. A generalized benders decomposition method based on the primal‐dual subgradient descent algorithm is proposed to solve the model. A series of numerical experiments is conducted to show the effectiveness of the solution approach and the significant benefits of using the renewable energy resources.  相似文献   
75.
In reliability engineering, the concept of minimal repair describes that the repair brings the failed unit (eg, system or component) to the situation which is same as it was just before the failure. With the help of the well‐known Gamma‐Poisson relationship, this paper investigates optimal allocation strategies of minimal repairs for parallel and series systems through implementing stochastic comparisons of various allocation policies in terms of the hazard rate, the reversed hazard rate, and the likelihood ratio orderings. Numerical examples are presented to illustrate these findings as well. These results not only strengthen and generalize some known ones in the seminal work of Shaked and Shanthikumar, but also solve the open problems proposed by Chahkandi et al.'s study and Arriaza et al.'s study.  相似文献   
76.
We consider scheduling a set of jobs with deadlines to minimize the total weighted late work on a single machine, where the late work of a job is the amount of processing of the job that is scheduled after its due date and before its deadline. This is the first study on scheduling with the late work criterion under the deadline restriction. In this paper, we show that (i) the problem is unary NP‐hard even if all the jobs have a unit weight, (ii) the problem is binary NP‐hard and admits a pseudo‐polynomial‐time algorithm and a fully polynomial‐time approximation scheme if all the jobs have a common due date, and (iii) some special cases of the problem are polynomially solvable.  相似文献   
77.
We study contracts between a single retailer and multiple suppliers of two substitutable products, where suppliers have fixed capacities and present the retailer cost contracts for their supplies. After observing the contracts, the retailer decides how much capacity to purchase from each supplier, to maximize profits from the purchased capacity from the suppliers plus his possessed inventory (endowment). This is modeled as a noncooperative, nonzero‐sum game, where suppliers, or principals, move simultaneously as leaders and the retailer, the common agent, is the sole follower. We are interested in the form of the contracts in equilibrium, their effect on the total supply chain profit, and how the profit is split between the suppliers and the retailer. Under mild assumptions, we characterize the set of all equilibrium contracts and discuss all‐unit and marginal‐unit quantity discounts as special cases. We also show that the supply chain is coordinated in equilibrium with a unique profit split between the retailer and the suppliers. Each supplier's profit is equal to the marginal contribution of her capacity to supply chain profits in equilibrium. The retailer's profit is equal to the total revenue collected from the market minus the payments to the suppliers and the associated sales costs.  相似文献   
78.
This article treats an elementary optimization problem, where an inbound stream of successive items is to be resequenced with the help of multiple parallel queues in order to restore an intended target sequence. Whenever early items block the one item to be currently released into the target sequence, they are withdrawn from their queue and intermediately stored in an overflow area until their actual release is reached. We aim to minimize the maximum number of items simultaneously stored in the overflow area during the complete resequencing process. We met this problem in industry practice at a large German automobile producer, who has to resequence containers with car seats prior to the assembly process. We formalize the resulting resequencing problem and provide suited exact and heuristic solution algorithms. In our computational study, we also address managerial aspects such as how to properly avoid the negative effects of sequence alterations. © 2016 Wiley Periodicals, Inc. Naval Research Logistics 63: 401–415, 2016  相似文献   
79.
In networks, there are often more than one sources of capacity. The capacities can be permanently or temporarily owned by the decision maker. Depending on the nature of sources, we identify the permanent capacity, spot market capacity, and contract capacity. We use a scenario tree to model the uncertainty, and build a multi‐stage stochastic integer program that can incorporate multiple sources and multiple types of capacities in a general network. We propose two solution methodologies for the problem. Firstly, we design an asymptotically convergent approximation algorithm. Secondly, we design a cutting plane algorithm based on Benders decomposition to find tight bounds for the problem. The numerical experiments show superb performance of the proposed algorithms compared with commercial software. © 2016 Wiley Periodicals, Inc. Naval Research Logistics 63: 600–614, 2017  相似文献   
80.
We seek dynamic server assignment policies in finite‐capacity queueing systems with flexible and collaborative servers, which involve an assembly and/or a disassembly operation. The objective is to maximize the steady‐state throughput. We completely characterize the optimal policy for a Markovian system with two servers, two feeder stations, and instantaneous assembly and disassembly operations. This optimal policy allocates one server per station unless one of the stations is blocked, in which case both servers work at the unblocked station. For Markovian systems with three stations and instantaneous assembly and/or disassembly operations, we consider similar policies that move a server away from his/her “primary” station only when that station is blocked or starving. We determine the optimal assignment of each server whose primary station is blocked or starving in systems with three stations and zero buffers, by formulating the problem as a Markov decision process. Using this optimal assignment, we develop heuristic policies for systems with three or more stations and positive buffers, and show by means of a numerical study that these policies provide near‐optimal throughput. Furthermore, our numerical study shows that these policies developed for assembly‐type systems also work well in tandem systems. © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号