首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   0篇
  国内免费   1篇
  2022年   1篇
  2021年   4篇
  2020年   6篇
  2018年   1篇
  2014年   3篇
  2013年   1篇
  2012年   2篇
  2005年   1篇
排序方式: 共有19条查询结果,搜索用时 15 毫秒
11.
The present study focuses on the mitigation of shock wave using novel geometric passages in the flow field. The strategy is to produce multiple shock reflections and diffractions in the passage with minimum flow obstruction, which in turn is expected to reduce the shock wave strength at the target location. In the present study the interaction of a plane shock front (generated from a shock tube) with various geometric designs such as, 1) zig-zag geometric passage, 2) staggered cylindrical obstructions and 3) zig-zag passage with cylindrical obstructions have been investigated using computational technique. It is seen from the numerical simulation that, among the various designs, the maximum shock attenuation is produced by the zig-zag passage with cylindrical obstructions which is then followed by zig-zag passage and staggered cylindrical obstructions. A comprehensive investigation on the shock wave reflection and diffraction phenomena happening in the proposed complex passages have also been carried out. In the new zig-zag design, the initial shock wave undergoes shock wave reflection and diffraction process which swaps alternatively as the shock front moves from one turn to the other turn. This cyclic shock reflection and diffraction process helps in diffusing the shock wave energy with practically no obstruction to the flow field. It is found that by combining the shock attenuation ability of zig-zag passage (using shock reflection and diffraction) with the shock attenuation ability of cylindrical blocks (by flow obstruction), a drastic attenuation in shock strength can be achieved with moderate level of flow blocking.  相似文献   
12.
训练损伤在军事教学训练中较为常见,不仅给学员造成了生理上的痛苦和心理上的负担,也影响了学员的正常学习和生活,甚至严重地影响了院校的正常教学与训练。采取问卷调查、查阅文献资料和现地考察的方法,详细分析了军事教学中训练损伤产生的原因,并提出可行的预防措施和建议,以达到减少训练损伤发生的目的。  相似文献   
13.
14.
《防务技术》2020,16(1):96-106
The numerical simulation of a blast wave of a multilayer composite charge is investigated. A calculation model of the near-field explosion and far-field propagation of the shock wave of a composite charge is established using the AUTODYN finite element program. Results of the near-field and far-field calculations of the shock wave respectively converge at cell sizes of 0.25–0.5 cm and 1–3 cm. The Euler––flux-corrected transport solver is found to be suitable for the far-field calculation after mapping. A numerical simulation is conducted to study the formation, propagation, and interaction of the shock wave of the composite charge for different initiation modes. It is found that the initiation mode obviously affects the shock-wave waveform and pressure distribution of the composite charge. Additionally, it is found that the area of the overpressure distribution is greatest for internal and external simultaneous initiation, and the peak pressure of the shock wave exponentially decays, fitting the calculation formula of the peak overpressure attenuation under different initiation modes, which is obtained and verified by experiment. The difference between numerical and experimental results is less than 10%, and the peak overpressure of both internal and external initiation is 56.12% higher than that of central single-point initiation.  相似文献   
15.
《防务技术》2020,16(3):617-626
The increasing threat of explosions on the battle field and the terrorist action requires the development of more effective blast resistance materials and structures. Curved structure can support the external loads effectively by virtue of their spatial curvature. In review of the excellent energy absorption property of auxetic structure, employing auxetic structure as core material in curved sandwich shows the potential to improve the protection performance. In this study, a novel cylindrical sandwich panel with double arrow auxetic (DAA) core was designed and the numerical model was built by ABAQUS. Due to the complexity of the structure, systematic parameter study and optimal design are conducted. Two cases of optimal design were considered, case1 focuses on reducing the deflection and mass of the structure, while case2 focuses on reducing the deflection and increasing the energy absorption per unit mass. Parameter study and optimal design were conducted based on Latin Hypercube Sampling (LHD) method, artificial neural networks (ANN) metamodel and the nondominated sorting genetic algorithm (NSGA-Ⅱ). The Pareto front was obtained and the cylindrical DAA structure performed much better than its equal solid panel in both blast resistance and energy absorption capacity. Optimization results can be used as a reference for different applications.  相似文献   
16.
《防务技术》2020,16(2):308-315
This study presents a simplified blast load prediction method on structures behind a protective barrier. The proposed method is basically an empirical approach based on Kingery-Bulamsh (K-B) chart and finite element (FE) analysis results. To this end, this study divides the structure into three regions by three critical points. Blast loads at each critical point can be calculated based on K-B chart and an approximation according to FE analysis results. Finally, peak reflected overpressure and impulse distributed on the structure can be approximately estimated by linearly connecting blast loads at each critical point. In order to confirm a feasibility of the proposed method, a series of numerical simulations were carried out. The simulation results were compared with FE analysis results which are presented in the open literature. From such comparisons, it was found that the proposed method is applicable to predict blast loads on structures behind a protective barrier.  相似文献   
17.
In clinical circles, the concept of “moral injury” has rapidly gained traction. Yet, from a moral philosophical point of view the concept is less clear than is suggested. That is, in current conceptualizations of moral injury, trauma’s moral dimension seems to be understood in a rather mechanistic and individualized manner. This article makes a start in developing an adequately founded conceptualization of the role of morality in deployment-related distress. It does so by reviewing and synthesizing insights from different disciplines into morality and trauma. This discussion will lead to three positions: (1) values and norms are by definition characterized by conflict, (2) moral conflict may entail important social dimensions, and (3) moral conflict may lead to altered beliefs about previously held values. These insights provide important steps in further developing conceptions of the role of morality in deployment-related suffering.  相似文献   
18.
《防务技术》2020,16(4):883-892
The influence of initiation modes on the explosive dispersion process of the multi-layer composite charge (MCC) was studied. Overpressure sensors and high-speed photography system were used to investigate the energy release process of an MCC with a specific structure. The shock wave pressure and explosive dispersion characteristics of the MCC under different initiation modes were compared. The forming and expanding process of the shock wave of the composite charge under different initiation modes was determined. The separation position of the shock wave and fireball interface was determined. The calculation formulas of the shock radius and overpressure of the composite charge are presented. The radius of the shock wave of the composite charge was significantly affected by the initiation mode. Moreover, the development process of the composite explosive fireball under different initiation modes was analyzed, the variation rules of the composite charge dispersion radius and fireball dispersion velocity with time were obtained under the different initiation modes, the explosion energy release rate of composite charge under simultaneous initiation modes was the highest, and the peak overpressure under the simultaneous initiation mode was 1.61 times that of central single-point initiation.  相似文献   
19.
《防务技术》2020,16(6):1167-1187
The load-carrying capacities and failure patterns of reinforced concrete components can be significantly changed by membrane effects. However, limited work has been carried out to investigate the blast resistance of Hybrid Fiber Reinforced Lightweight Aggregate Concrete (HFR-LWC) members accompanying membrane action. This paper presents a theoretical approach to quantitatively depicting the membrane behavior and its contribution on the behavior of HFR-LWC beams under close-range blast loadings, and the suitability of the proposed model is validated by a series of field tests. An improved Single-Degree-of-Freedom (SDOF) model was employed to describe the dynamic responses of beam-like members under blast loadings accompanying membrane action, where the mass-load coefficient is determined according to the nonuniformly distributed load induced by close-range explosion, and the membrane action is characterized by an in-plane (longitudinal) force and a resisting moment. The elasto-plastic and recovery responses of HFR-LWC beams under the combined action of blast load and membrane force were analyzed by the promoted model. A specially built end-constrain clamp was developed to provide membrane action for the beam member when they are subjected to blast load simultaneously. It is demonstrated that the analytical displacement-time histories are in good agreement with experimental results before peak deflections and that the improved SDOF model is an acceptable tool for predicting the behavior of HFR-LWC beams under blast loadings accompanying membrane action.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号