首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   732篇
  免费   133篇
  国内免费   23篇
  2023年   3篇
  2022年   6篇
  2021年   6篇
  2020年   4篇
  2019年   16篇
  2018年   8篇
  2017年   34篇
  2016年   41篇
  2015年   29篇
  2014年   48篇
  2013年   101篇
  2012年   48篇
  2011年   52篇
  2010年   46篇
  2009年   48篇
  2008年   45篇
  2007年   57篇
  2006年   42篇
  2005年   39篇
  2004年   40篇
  2003年   27篇
  2002年   25篇
  2001年   26篇
  2000年   24篇
  1999年   11篇
  1998年   9篇
  1997年   5篇
  1996年   2篇
  1995年   12篇
  1994年   5篇
  1993年   7篇
  1992年   3篇
  1991年   5篇
  1990年   10篇
  1989年   4篇
排序方式: 共有888条查询结果,搜索用时 590 毫秒
21.
We study a pull‐type, flexible, multi‐product, and multi‐stage production/inventory system with decentralized two‐card kanban control policies. Each stage involves a processor and two buffers with finite target levels. Production stages, arranged in series, can process several product types one at a time. Transportation of semi‐finished parts from one stage to another is performed in fixed lot sizes. The exact analysis is mathematically intractable even for smaller systems. We present a robust approximation algorithm to model two‐card kanban systems with batch transfers under arbitrary complexity. The algorithm uses phase‐type modeling to find effective processing times and busy period analysis to identify delays among product types in resource contention. Our algorithm reduces the effort required for estimating performance measures by a considerable margin and resolves the state–space explosion problem of analytical approaches. Using this analytical tool, we present new findings for a better understanding of some tactical and operational issues. We show that flow of material in small procurement sizes smoothes flow of information within the system, but also necessitates more frequent shipments between stages, raising the risk of late delivery. Balancing the risk of information delays vis‐à‐vis shipment delays is critical for the success of two‐card kanban systems. Although product variety causes time wasted in setup operations, it also facilitates relatively short production cycles enabling processors to switch from one product type to another more rapidly. The latter point is crucial especially in high‐demand environments. Increasing production line size prevents quick response to customer demand, but it may improve system performance if the vendor lead‐time is long or subject to high variation. Finally, variability in transportation and processing times causes the most damage if it arises at stages closer to the customer. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   
22.
In many practical multiserver queueing systems, servers not only serve randomly arriving customers but also work on the secondary jobs with infinite backlog during their idle time. In this paper, we propose a c‐server model with a two‐threshold policy, denoted by (e d), to evaluate the performance of this class of systems. With such a policy, when the number of idle servers has reached d (<c), then e (<d) idle agents will process secondary jobs. These e servers keep working on the secondary jobs until they find waiting customers exist in the system at a secondary job completion instant. Using the matrix analytic method, we obtain the stationary performance measures for evaluating different (e, d) policies. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2007.  相似文献   
23.
We study a component inventory planning problem in an assemble‐to‐order environment faced by many contract manufacturers in which both quick delivery and efficient management of component inventory are crucial for the manufacturers to achieve profitability in a highly competitive market. Extending a recent study in a similar problem setting by the same authors, we analyze an optimization model for determining the optimal component stocking decision for a contract manufacturer facing an uncertain future demand, where product price depends on the delivery times. In contrast to our earlier work, this paper considers the situation where the contract manufacturer needs to deliver the full order quantity in one single shipment. This delivery requirement is appropriate for many industries, such as the garment and toy industries, where the economies of scale in transportation is essential. We develop efficient solution procedures for solving this optimization problem. We use our model results to illustrate how the different model parameters affect the optimal solution. We also compare the results under this full‐shipment model with those from our earlier work that allows for multiple partial shipments. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   
24.
We introduce and develop models for a physical goods storage system based on the 15‐puzzle, a classic children's game in which 15 numbered tiles slide within a 4 × 4 grid. The objective of the game is to arrange the tiles in numerical sequence, starting from a random arrangement. For our purposes, the tiles represent totes, pallets, or even containers that must be stored very densely, and the objective is to maneuver items to an input–output point for retrieval or processing. We develop analytical results for storage configurations having a single empty location (as in the game) and experimental results for configurations with multiple empty locations. Designs with many empty locations can be made to form aisles, allowing us to compare puzzle‐based designs with traditional aisle‐based designs found in warehousing systems. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   
25.
We consider the infinite horizon serial inventory system with both average cost and discounted cost criteria. The optimal echelon base‐stock levels are obtained in terms of only probability distributions of leadtime demands. This analysis yields a novel approach for developing bounds and heuristics for optimal inventory control polices. In addition to deriving the known bounds in literature, we develop several new upper bounds for both average cost and discounted cost models. Numerical studies show that the bounds and heuristic are very close to optimal.© 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   
26.
Vendor‐managed revenue‐sharing arrangements are common in the newspaper and other industries. Under such arrangements, the supplier decides on the level of inventory while the retailer effectively operates under consignment, sharing the sales revenue with his supplier. We consider the case where the supplier is unable to predict demand, and must base her decisions on the retailer‐supplied probabilistic forecast for demand. We show that the retailer's best choice of a distribution to report to his supplier will not be the true demand distribution, but instead will be a degenerate distribution that surprisingly induces the supplier to provide the system‐optimal inventory quantity. (To maintain credibility, the retailer's reports of daily sales must then be consistent with his supplied forecast.) This result is robust under nonlinear production costs and nonlinear revenue‐sharing. However, if the retailer does not know the supplier's production cost, the forecast “improves” and could even be truthful. That, however, causes the supplier's order quantity to be suboptimal for the overall system. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   
27.
This study combines inspection and lot‐sizing decisions. The issue is whether to INSPECT another unit or PRODUCE a new lot. A unit produced is either conforming or defective. Demand need to be satisfied in full, by conforming units only. The production process may switch from a “good” state to a “bad” state, at constant rate. The proportion of conforming units in the good state is higher than in the bad state. The true state is unobservable and can only be inferred from the quality of units inspected. We thus update, after each inspection, the probability that the unit, next candidate for inspection, was produced while the production process was in the good state. That “good‐state‐probability” is the basis for our decision to INSPECT or PRODUCE. We prove that the optimal policy has a simple form: INSPECT only if the good‐state‐probability exceeds a control limit. We provide a methodology to calculate the optimal lot size and the expected costs associated with INSPECT and PRODUCE. Surprisingly, we find that the control limit, as a function of the demand (and other problem parameters) is not necessarily monotone. Also, counter to intuition, it is possible that the optimal action is PRODUCE, after revealing a conforming unit. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   
28.
This paper proposes a kurtosis correction (KC) method for constructing the X? and R control charts for symmetrical long‐tailed (leptokurtic) distributions. The control charts are similar to the Shewhart control charts and are very easy to use. The control limits are derived based on the degree of kurtosis estimated from the actual (subgroup) data. It is assumed that the underlying quality characteristic is symmetrically distributed and no other distributional and/or parameter assumptions are made. The control chart constants are tabulated and the performance of these charts is compared with that of the Shewhart control charts. For the case of the logistic distribution, the exact control limits are derived and are compared with the KC method and the Shewhart method. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   
29.
在论述公安消防部队开展基地化训练必要性和迫切性的基础上,分析了当前在建设消防部队训练基地和开展基地化训练过程中存在的问题,提出了消防训练基地建设、以训练基地为平台实施基地化训练、开展网上训练为基地化训练奠定基础的基本构思,并剖析了实施基地化训练应注意的问题。  相似文献   
30.
基于神经网络的模糊理论在桥梁状态评估中的应用   总被引:1,自引:0,他引:1  
探讨了模糊数学中的隶属函数在桥梁技术等级状态评估中的应用.在研究现有桥梁状态评估方法的基础上,把人工神经网络和模糊数学理论结合起来应用于大跨度预应力斜拉桥的等级状态评估,建立了基于三层神经元的模糊神经网络模型,并建立结构损伤度函数及等级隶属度模型,通过样本学习训练,获取评估专家的知识及直觉思维,最终确定桥梁所对应的技术状态等级.以检测的480组索力数据作为学习样本,另外4组作为验证样本进行了索力状态评估预测.计算结果表明,网络预测值与期望值吻合良好.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号