首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   127篇
  免费   13篇
  2023年   1篇
  2022年   1篇
  2020年   3篇
  2019年   2篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
  2015年   5篇
  2014年   7篇
  2013年   4篇
  2012年   8篇
  2011年   13篇
  2010年   8篇
  2009年   8篇
  2008年   10篇
  2007年   16篇
  2006年   7篇
  2005年   6篇
  2004年   7篇
  2003年   2篇
  2002年   6篇
  2001年   6篇
  2000年   5篇
  1999年   3篇
  1998年   3篇
  1997年   4篇
  1996年   1篇
排序方式: 共有140条查询结果,搜索用时 31 毫秒
41.
This study addresses the design of a three‐stage production/distribution system where the first stage includes the set of established retailers and the second and third stages include the sets of potential distribution centers (DCs) and potential capacitated suppliers, respectively. In this problem, in addition to the fixed location/operating costs associated with locating DCs and suppliers, we consider the coordinated inventory replenishment decisions at the located DCs and retailers along with the appropriate inventory costs explicitly. In particular, we account for the replenishment and holding costs at the retailers and selected DCs, and the fixed plus distance‐based transportation costs between the selected plants and their assigned DCs, and between the selected DCs and their respective retailers, explicitly. The resulting formulation is a challenging mixed‐integer nonlinear programming model for which we propose efficient heuristic solution approaches. Our computational results demonstrate the performance of the heuristic approaches as well as the value of integrated decision‐making by verifying that significant cost savings are realizable when the inventory decisions and costs are incorporated in the production distribution system design. © 2012 Wiley Periodicals, Inc. Naval Research Logistics 59: 172–195, 2012  相似文献   
42.
Consider a single‐item, periodic review, infinite‐horizon, undiscounted, inventory model with stochastic demands, proportional holding and shortage costs, and full backlogging. Orders can arrive in every period, and the cost of receiving them is negligible (as in a JIT setting). Every T periods, one audits the current stock level and decides on deliveries for the next T periods, thus incurring a fixed audit cost and—when one schedules deliveries—a fixed order cost. The problem is to find a review period T and an ordering policy that satisfy the average cost criterion. The current article extends an earlier treatment of this problem, which assumed that the fixed order cost is automatically incurred once every T periods. We characterize an optimal ordering policy when T is fixed, prove that an optimal review period T** exists, and develop a global search algorithm for its computation. We also study the behavior of four approximations to T** based on the assumption that the fixed order cost is incurred during every cycle. Analytic results from a companion article (where μ/σ is large) and extensive computational experiments with normal and gamma demand test problems suggest these approximations and associated heuristic policies perform well when μ/σ ≥ 2. © 2000 John Wiley & Sons, Inc. Naval Research Logistics 47: 329–352, 2000  相似文献   
43.
The system under study is a single item, two‐echelon production‐inventory system consisting of a capacitated production facility, a central warehouse, and M regional distribution centers that satisfy stochastic demand. Our objective is to determine a system base‐stock level which minimizes the long run average system cost per period. Central to the approach are (1) an inventory allocation model and associated convex cost function designed to allocate a given amount of system inventory across locations, and (2) a characterization of the amount of available system inventory using the inventory shortfall random variable. An exact model must consider the possibility that inventories may be imbalanced in a given period. By assuming inventory imbalances cannot occur, we develop an approximation model from which we obtain a lower bound on the per period expected cost. Through an extensive simulation study, we analyze the quality of our approximation, which on average performed within 0.50% of the lower bound. © 2000 John Wiley & Sons, Inc. Naval Research Logistics 47: 377–398, 2000  相似文献   
44.
A recent paper finds that when volume discounts are available, in some cases, reliance on the Economic Order Quantity (EOQ) model can induce purchasers to make wealth reducing decisions, and the Present Value (PV) approach should be preferred. While this finding is theoretically correct, the magnitudes of wealth reductions suggested by the paper's numerical examples seem to be questionable. Furthermore, the paper also finds that, in some other cases, a purchaser using the EOQ approach realizes a net increase in current wealth compared to a purchaser using the PV approach. Logic suggests that such a finding cannot be correct, since by its very definition, it is the PV approach that seeks to maximize the current wealth. We offer an alternative frame of comparison and a modified model to show that, under the paper's assumptions, the EOQ approach can never realize a net increase in current wealth compared to the current wealth generated by the PV approach. On the other hand, we also show that when typical values of the relevant parameters prevail, the additional costs imposed by the EOQ approach are not significant. Finally, we suggest that insofar as the PV approach requires greater administrative costs to implement, it may even be counterproductive to the goal of wealth maximization. © 1998 John Wiley & Sons, Inc. Naval Research Logistics 45: 377–389, 1998  相似文献   
45.
We consider a class of production scheduling models with m identical machines in parallel and k different product types. It takes a time pi to produce one unit of product type i on any one of the machines. There is a demand stream for product type i consisting of ni units with each unit having a given due date. Before a machine starts with the production of a batch of products of type i a setup cost c is incurred. We consider several different objective functions. Each one of the objective functions has three components, namely a total setup cost, a total earliness cost, and a total tardiness cost. In our class of problems we find a relatively large number of problems that can be solved either in polynomial time or in pseudo‐polynomial time. The polynomiality or pseudo‐polynomiality is achieved under certain special conditions that may be of practical interest; for example, a regularity pattern in the string of due dates combined with earliness and tardiness costs that are similar for different types of products. The class of models we consider includes as special cases discrete counterparts of a number of inventory models that have been considered in the literature before, e.g., Wagner and Whitin (Manage Sci 5 (1958), 89–96) and Zangwill (Oper Res 14 (1966), 486–507; Manage Sci 15 (1969), 506–527). © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   
46.
We consider a supply chain in which a retailer faces a stochastic demand, incurs backorder and inventory holding costs and uses a periodic review system to place orders from a manufacturer. The manufacturer must fill the entire order. The manufacturer incurs costs of overtime and undertime if the order deviates from the planned production capacity. We determine the optimal capacity for the manufacturer in case there is no coordination with the retailer as well as in case there is full coordination with the retailer. When there is no coordination the optimal capacity for the manufacturer is found by solving a newsvendor problem. When there is coordination, we present a dynamic programming formulation and establish that the optimal ordering policy for the retailer is characterized by two parameters. The optimal coordinated capacity for the manufacturer can then be obtained by solving a nonlinear programming problem. We present an efficient exact algorithm and a heuristic algorithm for computing the manufacturer's capacity. We discuss the impact of coordination on the supply chain cost as well as on the manufacturer's capacity. We also identify the situations in which coordination is most beneficial. © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   
47.
We consider a simple two‐stage supply chain with a single retailer facing i.i.d. demand and a single manufacturer with finite production capacity. We analyze the value of information sharing between the retailer and the manufacturer over a finite time horizon. In our model, the manufacturer receives demand information from the retailer even during time periods in which the retailer does not order. To analyze the impact of information sharing, we consider the following three strategies: (1) the retailer does not share demand information with the manufacturer; (2) the retailer does share demand information with the manufacturer and the manufacturer uses the optimal policy to schedule production; (3) the retailer shares demand information with the manufacturer and the manufacturer uses a greedy policy to schedule production. These strategies allow us to study the impact of information sharing on the manufacturer as a function of the production capacity, and the frequency and timing in which demand information is shared. © 2003 Wiley Periodicals, Inc. Naval Research Logistics, 2003  相似文献   
48.
We consider a distribution system consisting of a central warehouse and a group of retailers facing independent stochastic demand. The retailers replenish from the warehouse, and the warehouse from an outside supplier with ample supply. Time is continuous. Most previous studies on inventory control policies for this system have considered stock‐based batch‐ordering policies. We develop a time‐based joint‐replenishment policy in this study. Let the warehouse set up a basic replenishment interval. The retailers are replenished through the warehouse in intervals that are integer multiples of the basic replenishment interval. No inventory is carried at the warehouse. We provide an exact evaluation of the long‐term average system costs under the assumption that stock can be balanced among the retailers. The structural properties of the inventory system are characterized. We show that, although it is well known that stock‐based inventory control policies dominate time‐based inventory control policies at a single facility, this dominance does not hold for distribution systems with multiple retailers and stochastic demand. This is because the latter can provide a more efficient mechanism to streamline inventory flow and pool retailer demand, even though the former may be able to use more updated stock information to optimize system performance. The findings of the study provide insights about the key factors that drive the performance of a multiechelon inventory control system. © 2013 Wiley Periodicals, Inc. Naval Research Logistics 60: 637–651, 2013  相似文献   
49.
舰艇出海执行任务期间,需要携行一定种类和数量的物资自给。文中研究了这种单级供应条件下,如何确定备件最优携行量的问题。建立了以服务水平为目标,以资源为约束的目标规划模型,模型考虑了随机提前期和备件重要度。提出一种基于边际效费比的增量法用于求解这个模型。最后,给出一个算例并得到了一些结论。  相似文献   
50.
This paper considers a discrete time, single item production/inventory system with random period demands. Inventory levels are reviewed periodically and managed using a base‐stock policy. Replenishment orders are placed with the production system which is capacitated in the sense that there is a single server that sequentially processes the items one at a time with stochastic unit processing times. In this setting the variability in demand determines the arrival pattern of production orders at the queue, influencing supply lead times. In addition, the inventory behavior is impacted by the correlation between demand and lead times: a large demand size corresponds to a long lead time, depleting the inventory longer. The contribution of this paper is threefold. First, we present an exact procedure based on matrix‐analytic techniques for computing the replenishment lead time distribution given an arbitrary discrete demand distribution. Second, we numerically characterize the distribution of inventory levels, and various other performance measures such as fill rate, base‐stock levels and optimal safety stocks, taking the correlation between demand and lead times into account. Third, we develop an algorithm to fit the first two moments of the demand and service time distribution to a discrete phase‐type distribution with a minimal number of phases. This provides a practical tool to analyze the effect of demand variability, as measured by its coefficient of variation, on system performance. We also show that our model is more appropriate than some existing models of capacitated systems in discrete time. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号