首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   360篇
  免费   62篇
  国内免费   3篇
  2021年   2篇
  2020年   1篇
  2019年   11篇
  2018年   4篇
  2017年   16篇
  2016年   22篇
  2015年   22篇
  2014年   17篇
  2013年   68篇
  2012年   16篇
  2011年   25篇
  2010年   24篇
  2009年   19篇
  2008年   24篇
  2007年   32篇
  2006年   25篇
  2005年   17篇
  2004年   22篇
  2003年   13篇
  2002年   16篇
  2001年   11篇
  2000年   11篇
  1999年   3篇
  1998年   3篇
  1993年   1篇
排序方式: 共有425条查询结果,搜索用时 156 毫秒
21.
Design and management of complex systems with both integer and continuous decision variables can be guided using mixed‐integer optimization models and analysis. We propose a new mixed‐integer black‐box optimization (MIBO) method, subspace dynamic‐simplex linear interpolation search (SD‐SLIS), for decision making problems in which system performance can only be evaluated with a computer black‐box model. Through a sequence of gradient‐type local searches in subspaces of solution space, SD‐SLIS is particularly efficient for such MIBO problems with scaling issues. We discuss the convergence conditions and properties of SD‐SLIS algorithms for a class of MIBO problems. Under mild conditions, SD‐SLIS is proved to converge to a stationary solution asymptotically. We apply SD‐SLIS to six example problems including two MIBO problems associated with petroleum field development projects. The algorithm performance of SD‐SLIS is compared with that of a state‐of‐the‐art direct‐search method, NOMAD, and that of a full space simplex interpolation search, Full‐SLIS. The numerical results suggest that SD‐SLIS solves the example problems efficiently and outperforms the compared methods for most of the example cases. © 2017 Wiley Periodicals, Inc. Naval Research Logistics 64: 305–322, 2017  相似文献   
22.
Under quasi‐hyperbolic discounting, the valuation of a payoff falls relatively rapidly for earlier delay periods, but then falls more slowly for longer delay periods. When the salespersons with quasi‐hyperbolic discounting consider the product sale problem, they would exert less effort than their early plan, thus resulting in losses of future profit. We propose a winner‐takes‐all competition to alleviate the above time inconsistent behaviors of the salespersons, and allow the company to maximize its revenue by choosing an optimal bonus. To evaluate the effects of the competition scheme, we define the group time inconsistency degree of the salespersons, which measures the consequence of time inconsistent behaviors, and two welfare measures, the group welfare of the salespersons and the company revenue. We show that the competition always improves the group welfare and the company revenue as long as the company chooses to run the competition in the first place. However, the effect on group time inconsistency degree is mixed. When the optimal bonus is moderate (extreme high), the competition motivates (over‐motivates) the salesperson to work hard, thus alleviates (worsens) the time inconsistent behaviors. © 2017 Wiley Periodicals, Inc. Naval Research Logistics 64: 357–372, 2017  相似文献   
23.
We study a setting with a single type of resource and with several players, each associated with a single resource (of this type). Unavailability of these resources comes unexpectedly and with player‐specific costs. Players can cooperate by reallocating the available resources to the ones that need the resources most and let those who suffer the least absorb all the costs. We address the cost savings allocation problem with concepts of cooperative game theory. In particular, we formulate a probabilistic resource pooling game and study them on various properties. We show that these games are not necessarily convex, do have non‐empty cores, and are totally balanced. The latter two are shown via an interesting relationship with Böhm‐Bawerk horse market games. Next, we present an intuitive class of allocation rules for which the resulting allocations are core members and study an allocation rule within this class of allocation rules with an appealing fairness property. Finally, we show that our results can be applied to a spare parts pooling situation.  相似文献   
24.
以水下单元的短路/开路故障模式为基础,提出了一种分析缆系海底观测网络恒流远供系统可靠性的方法。根据系统供电和结构特性,将系统分成不同的供电链路和链路段。详细研究了处于不同位置的各种水下单元发生故障时,对链路和观测设备的供电状态的影响。归纳了导致系统和各链路无法正常导通、观测设备无法得到供电的状态情况,分析了不同故障状态发生的概率,进而得出了求解系统、供电链路与供电设备的供电可靠度的方法。通过算例分析,进一步梳理了3种供电可靠性的共性规律,说明在设计和建设恒流远供系统时,应综合须考量这3种供电可靠性。  相似文献   
25.
We consider the problem of scheduling a set of n jobs on a single batch machine, where several jobs can be processed simultaneously. Each job j has a processing time pj and a size sj. All jobs are available for processing at time 0. The batch machine has a capacity D. Several jobs can be batched together and processed simultaneously, provided that the total size of the jobs in the batch does not exceed D. The processing time of a batch is the largest processing time among all jobs in the batch. There is a single vehicle available for delivery of the finished products to the customer, and the vehicle has capacity K. We assume that K = rD, where and r is an integer. The travel time of the vehicle is T; that is, T is the time from the manufacturer to the customer. Our goal is to find a schedule of the jobs and a delivery plan so that the service span is minimized, where the service span is the time that the last job is delivered to the customer. We show that if the jobs have identical sizes, then we can find a schedule and delivery plan in time such that the service span is minimum. If the jobs have identical processing times, then we can find a schedule and delivery plan in time such that the service span is asymptotically at most 11/9 times the optimal service span. When the jobs have arbitrary processing times and arbitrary sizes, then we can find a schedule and delivery plan in time such that the service span is asymptotically at most twice the optimal service span. We also derive upper bounds of the absolute worst‐case ratios in both cases. © 2015 Wiley Periodicals, Inc. Naval Research Logistics 62: 470–482, 2015  相似文献   
26.
We consider a partially observable degrading system subject to condition monitoring and random failure. The system's condition is categorized into one of three states: a healthy state, a warning state, and a failure state. Only the failure state is observable. While the system is operational, vector data that is stochastically related to the system state is obtained through condition monitoring at regular sampling epochs. The state process evolution follows a hidden semi‐Markov model (HSMM) and Erlang distribution is used for modeling the system's sojourn time in each of its operational states. The Expectation‐maximization (EM) algorithm is applied to estimate the state and observation parameters of the HSMM. Explicit formulas for several important quantities for the system residual life estimation such as the conditional reliability function and the mean residual life are derived in terms of the posterior probability that the system is in the warning state. Numerical examples are presented to demonstrate the applicability of the estimation procedure and failure prediction method. A comparison results with hidden Markov modeling are provided to illustrate the effectiveness of the proposed model. © 2015 Wiley Periodicals, Inc. Naval Research Logistics 62: 190–205, 2015  相似文献   
27.
In scheduling problems with two competing agents, each one of the agents has his own set of jobs to be processed and his own objective function, and both share a common processor. In the single‐machine problem studied in this article, the goal is to find a joint schedule that minimizes the total deviation of the job completion times of the first agent from a common due‐date, subject to an upper bound on the maximum deviation of job completion times of the second agent. The problem is shown to be NP‐hard even for a nonrestrictive due‐date, and a pseudopolynomial dynamic program is introduced and tested numerically. For the case of a restrictive due‐date (a sufficiently small due‐date that may restrict the number of early jobs), a faster pseudopolynomial dynamic program is presented. We also study the multiagent case, which is proved to be strongly NP‐hard. A simple heuristic for this case is introduced, which is tested numerically against a lower bound, obtained by extending the dynamic programming algorithm. © 2013 Wiley Periodicals, Inc. Naval Research Logistics 61: 1–16, 2014  相似文献   
28.
Service systems such as call centers and hospital emergency rooms typically have strongly time‐varying arrival rates. Thus, a nonhomogeneous Poisson process (NHPP) is a natural model for the arrival process in a queueing model for performance analysis. Nevertheless, it is important to perform statistical tests with service system data to confirm that an NHPP is actually appropriate, as emphasized by Brown et al. [8]. They suggested a specific statistical test based on the Kolmogorov–Smirnov (KS) statistic after exploiting the conditional‐uniform (CU) property to transform the NHPP into a sequence of i.i.d. random variables uniformly distributed on [0,1] and then performing a logarithmic transformation of the data. We investigate why it is important to perform the final data transformation and consider what form it should take. We conduct extensive simulation experiments to study the power of these alternative statistical tests. We conclude that the general approach of Brown et al. [8] is excellent, but that an alternative data transformation proposed by Lewis [22], drawing upon Durbin [10], produces a test of an NHPP test with consistently greater power. We also conclude that the KS test after the CU transformation, without any additional data transformation, tends to be best to test against alternative hypotheses that primarily differ from an NHPP only through stochastic and time dependence. © 2014 Wiley Periodicals, Inc. Naval Research Logistics 61: 66–90, 2014  相似文献   
29.
We develop the first approximation algorithm with worst‐case performance guarantee for capacitated stochastic periodic‐review inventory systems with setup costs. The structure of the optimal control policy for such systems is extremely complicated, and indeed, only some partial characterization is available. Thus, finding provably near‐optimal control policies has been an open challenge. In this article, we construct computationally efficient approximate optimal policies for these systems whose demands can be nonstationary and/or correlated over time, and show that these policies have a worst‐case performance guarantee of 4. We demonstrate through extensive numerical studies that the policies empirically perform well, and they are significantly better than the theoretical worst‐case guarantees. We also extend the analyses and results to the case with batch ordering constraints, where the order size has to be an integer multiple of a base load. © 2014 Wiley Periodicals, Inc. Naval Research Logistics 61: 304–319, 2014  相似文献   
30.
We consider the problem of scheduling a set of jobs on a single machine subject to random breakdowns. We focus on the preemptive‐repeat model, which addresses the situation where, if a machine breaks down during the processing of a job, the work done on the job prior to the breakdown is lost and the job will have to be started from the beginning again when the machine resumes its work. We allow that (i) the uptimes and downtimes of the machine follow general probability distributions, (ii) the breakdown process of the machine depends upon the job being processed, (iii) the processing times of the jobs are random variables following arbitrary distributions, and (iv) after a breakdown, the processing time of a job may either remain a same but unknown amount, or be resampled according to its probability distribution. We first derive the optimal policy for a class of problems under the criterion to maximize the expected discounted reward earned from completing all jobs. The result is then applied to further obtain the optimal policies for other due date‐related criteria. We also discuss a method to compute the moments and probability distributions of job completion times by using their Laplace transforms, which can convert a general stochastic scheduling problem to its deterministic equivalent. The weighted squared flowtime problem and the maintenance checkup and repair problem are analyzed as applications. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号