首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Many cooperative games, especially ones stemming from resource pooling in queueing or inventory systems, are based on situations in which each player is associated with a single attribute (a real number representing, say, a demand) and in which the cost to optimally serve any sum of attributes is described by an elastic function (which means that the per‐demand cost is non‐increasing in the total demand served). For this class of situations, we introduce and analyze several cost allocation rules: the proportional rule, the serial cost sharing rule, the benefit‐proportional rule, and various Shapley‐esque rules. We study their appeal with regard to fairness criteria such as coalitional rationality, benefit ordering, and relaxations thereof. After showing the impossibility of combining coalitional rationality and benefit ordering, we show for each of the cost allocation rules which fairness criteria it satisfies. © 2017 Wiley Periodicals, Inc. Naval Research Logistics 64: 271–286, 2017  相似文献   

2.
We consider several independent decision makers who stock expensive, low‐demand spare parts for their high‐tech machines. They can collaborate by full pooling of their inventories via free transshipments. We examine the stability of such pooling arrangements, and we address the issue of fairly distributing the collective holding and downtime costs over the participants, by applying concepts from cooperative game theory. We consider two settings: one where each party maintains a predetermined stocking level and one where base stock levels are optimized. For the setting with fixed stocking levels, we unravel the possibly conflicting effects of implementing a full pooling arrangement and study these effects separately to establish intuitive conditions for existence of a stable cost allocation. For the setting with optimized stocking levels, we provide a simple proportional rule that accomplishes a population monotonic allocation scheme if downtime costs are symmetric among participants. Although our whole analysis is motivated by spare parts applications, all results are also applicable to other pooled resource systems of which the steady‐state behavior is equivalent to that of an Erlang loss system. © 2012 Wiley Periodicals, Inc. Naval Research Logistics, 2012  相似文献   

3.
This article introduces maximum cooperative purchasing (MCP)‐situations, a new class of cooperative purchasing situations. Next, an explicit alternative mathematical characterization of the nucleolus of cooperative games is provided. The allocation of possible cost savings in MCP‐situations, in which the unit price depends on the largest order quantity within a group of players, is analyzed by defining corresponding cooperative MCP‐games. We show that a decreasing unit price is a sufficient condition for a nonempty core: there is a set of marginal vectors that belong to the core. The nucleolus of an MCP‐game can be derived in polynomial time from one of these marginal vectors. To show this result, we use the new mathematical characterization for the nucleolus for cooperative games. Using the decomposition of an MCP‐game into unanimity games, we find an explicit expression for the Shapley value. Finally, the behavior of the solution concepts is compared numerically. © 2013 Wiley Periodicals, Inc. Naval Research Logistics 60: 607–624, 2013  相似文献   

4.
Search theory originates from the military research efforts of WWII. Most researchers of that period modeled their search games in noncooperative games, where players are enemies or compete against each other. In this article, we deal with a cooperative search game, where multiple searchers behave cooperatively. First we describe several search problems and discuss the possibility of a coalition or cooperation among searchers. For the cooperative search game, we define a function named quasi‐characteristic function, which gives us a criterion similar to the so‐called characteristic function in the general coalition game with transferable utility. The search operation includes a kind of randomness with respect to whether the searchers can detect a target and get the value of the target. We also propose a methodology to divide the obtained target value among members of the coalition taking account of the randomness. As a concrete problem of the cooperative search game, we take the so‐called search allocation game, where searchers distribute their searching resources to detect a target in a cooperative way and the target moves in a search space to evade the searchers. Lastly, we discuss the core of the cooperative search allocation game. © 2009 Wiley Periodicals, Inc. Naval Research Logistics, 2009  相似文献   

5.
Semivalues are allocation rules for cooperative games that assign to each player in a given game a weighted sum of his marginal contributions to all coalitions he belongs to, where the weighting coefficients depend only on the coalition size. Binomial semivalues are a special class of semivalues whose weighting coefficients are obtained by means of a unique parameter. In particular, the Banzhaf value is a binomial semivalue. In this article, we provide an axiomatic characterization for each binomial semivalue. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   

6.
This article deals with a two‐person zero‐sum game called a search allocation game (SAG), in which a searcher and a target participate as players. The searcher distributes his searching resources in a search space to detect the target. The effect of resources lasts a certain period of time and extends to some areas at a distance from the resources' dropped points. On the other hand, the target moves around in the search space to evade the searcher. In the history of search games, there has been little research covering the durability and reachability of searching resources. This article proposes two linear programming formulations to solve the SAG with durable and reachable resources, and at the same time provide an optimal strategy of distributing searching resources for the searcher and an optimal moving strategy for the target. Using examples, we will analyze the influences of two attributes of resources on optimal strategies. © 2007 Wiley Periodicals, Inc. Naval Research Logistics 2008  相似文献   

7.
The inspection game is a two-player noncooperative game that models a situation where an inspector verifies whether the inspectee complies with the rules (on the assumption that the inspectee has the tendency to violate at least one of the rules). The usual approach in the analysis of this game seeks to find an optimal strategic inspection scheme for each of the two players yielding favorable payoffs. Recently, there have been some developments in the study of such games that use a mathematical structure known as reaction network involving a set of molecular species and the existing reactions among these species. In this paper, we use a reaction network to analyze the inspection game giving an alternative way of modeling the social situation. The molecular species play the role of the players' decision moves and their resulting gain or loss, while the reactions are the encounters of the decisions of the players which, as expected, yield payoffs. We reexamine the dynamics of the inspection game through the lens of reaction network theory and consider various situations that call for more detailed analyses such as equal or unequal reaction rates and inspection leadership. Conditions concerning reaction rates, initial population of decision species, benefits, and costs are determined in order to identify strategies that yield better payoffs both for the inspector and inspectee. These results illustrate practical insights rooted from the formulated simple game models.  相似文献   

8.
In the classical EPQ model with continuous and constant demand, holding and setup costs are minimized when the production rate is no larger than the demand rate. However, the situation may change when demand is lumpy. We consider a firm that produces multiple products, each having a unique lumpy demand pattern. The decision involves determining both the lot size for each product and the allocation of resources for production rate improvements among the products. We find that each product's optimal production policy will take on only one of two forms: either continuous production or lot‐for‐lot production. The problem is then formulated as a nonlinear nonsmooth knapsack problem among products determined to be candidates for resource allocation. A heuristic procedure is developed to determine allocation amounts. The procedure decomposes the problem into a mixed integer program and a nonlinear convex resource allocation problem. Numerical tests suggest that the heuristic performs very well on average compared to the optimal solution. Both the model and the heuristic procedure can be extended to allow the company to simultaneously alter both the production rates and the incoming demand lot sizes through quantity discounts. Extensions can also be made to address the case where a single investment increases the production rate of multiple products. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004.  相似文献   

9.
The nucleolus solution for cooperative games in characteristic function form is usually computed numerically by solving a sequence of linear programing (LP) problems, or by solving a single, but very large‐scale, LP problem. This article proposes an algebraic method to compute the nucleolus solution analytically (i.e., in closed‐form) for a three‐player cooperative game in characteristic function form. We first consider cooperative games with empty core and derive a formula to compute the nucleolus solution. Next, we examine cooperative games with nonempty core and calculate the nucleolus solution analytically for five possible cases arising from the relationship among the value functions of different coalitions. © 2010 Wiley Periodicals, Inc. Naval Research Logistics, 2010  相似文献   

10.
In this paper, we introduce partially observable agent‐intruder games (POAIGs). These games model dynamic search games on graphs between security forces (an agent) and an intruder given possible (border) entry points and high value assets that require protection. The agent faces situations with dynamically changing, partially observable information about the state of the intruder and vice versa. The agent may place sensors at selected locations, while the intruder may recruit partners to observe the agent's movement. We formulate the problem as a two‐person zero‐sum game, and develop efficient algorithms to compute each player's optimal strategy. The solution to the game will help the agent choose sensor locations and design patrol routes that can handle imperfect information. First, we prove the existence of ?‐optimal strategies for POAIGs with an infinite time horizon. Second, we introduce a Bayesian approximation algorithm to identify these ?‐optimal strategies using belief functions that incorporate the imperfect information that becomes available during the game. For the solutions of large POAIGs with a finite time horizon, we use a solution method common to extensive form games, namely, the sequence form representation. To illustrate the POAIGs, we present several examples and numerical results.  相似文献   

11.
In Assemble‐To‐Order (ATO) systems, situations may arise in which customer demand must be backlogged due to a shortage of some components, leaving available stock of other components unused. Such unused component stock is called remnant stock. Remnant stock is a consequence of both component ordering decisions and decisions regarding allocation of components to end‐product demand. In this article, we examine periodic‐review ATO systems under linear holding and backlogging costs with a component installation stock policy and a First‐Come‐First‐Served (FCFS) allocation policy. We show that the FCFS allocation policy decouples the problem of optimal component allocation over time into deterministic period‐by‐period optimal component allocation problems. We denote the optimal allocation of components to end‐product demand as multimatching. We solve the multi‐matching problem by an iterative algorithm. In addition, an approximation scheme for the joint replenishment and allocation optimization problem with both upper and lower bounds is proposed. Numerical experiments for base‐stock component replenishment policies show that under optimal base‐stock policies and optimal allocation, remnant stock holding costs must be taken into account. Finally, joint optimization incorporating optimal FCFS component allocation is valuable because it provides a benchmark against which heuristic methods can be compared. © 2015 Wiley Periodicals, Inc. Naval Research Logistics 62: 158–169, 2015  相似文献   

12.
We consider two‐stage tandem queueing systems with dedicated servers in each station and a flexible server that is trained to serve both stations. We assume no arrivals, exponential service times, and linear holding costs for jobs present in the system. We study the optimal dynamic assignment of servers to jobs assuming a noncollaborative work discipline with idling and preemptions allowed. For larger holding costs in the first station, we show that (i) nonidling policies are optimal and (ii) if the flexible server is not faster than the dedicated servers, the optimal server allocation strategy has a threshold‐type structure. For all other cases, we provide numerical results that support the optimality of threshold‐type policies. Our numerical experiments also indicate that when the flexible server is faster than the dedicated server of the second station, the optimal policy may have counterintuitive properties, which is not the case when a collaborative service discipline is assumed. © 2014 Wiley Periodicals, Inc. Naval Research Logistics 61: 435–446, 2014  相似文献   

13.
We consider a resource allocation problem, where resources of different capacities must satisfy multiple demands. The demand sizes and the resource capacities are limited to sizes that are power‐of‐two integers (i.e., 1, 2, 4, 8, …). The cost of the resources exhibit economies‐of‐scale savings, i.e., the cost per capacity unit is smaller for resources with larger capacity. The problem is to select the minimum‐cost set of resources that satisfies the demands, while each of the demands must be assigned to a single resource and the number of selected resources does not exceed a specified upper bound. We present algorithms that take advantage of the special structure of the problem and provide optimal solutions in a negligible computing effort. This problem is important for the allocation of blocks of Internet Protocol (IP) addresses, referred to as subnets. In typical IP networks, subnets are allocated at a large number of nodes. An effective allocation attempts to balance the volume of excess addresses that are not used versus fragmentation of addresses at nodes to too many subnets with a discontinuous range of addresses. Due to the efficiency of the algorithms, they can readily be used as valuable modules in IP address management systems. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005.  相似文献   

14.
In this paper we study a capacity allocation problem for two firms, each of which has a local store and an online store. Customers may shift among the stores upon encountering a stockout. One question facing each firm is how to allocate its finite capacity (i.e., inventory) between its local and online stores. One firm's allocation affects the decision of the rival, thereby creating a strategic interaction. We consider two scenarios of a single‐product single‐period model and derive corresponding existence and stability conditions for a Nash equilibrium. We then conduct sensitivity analysis of the equilibrium solution with respect to price and cost parameters. We also prove the existence of a Nash equilibrium for a generalized model in which each firm has multiple local stores and a single online store. Finally, we extend the results to a multi‐period model in which each firm decides its total capacity and allocates this capacity between its local and online stores. A myopic solution is derived and shown to be a Nash equilibrium solution of a corresponding “sequential game.” © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2006  相似文献   

15.
Optimizing the selection of resources to accomplish a set of tasks involves evaluating the tradeoffs between the cost of maintaining the resources necessary to accomplish the tasks and the penalty cost associated with unfinished tasks. We consider the case where resources are categorized into types, and limits (capacity) are imposed on the number of each type that can be selected. The objective is to minimize the sum of penalty costs and resource costs. This problem has several practical applications including production planning, new product design, menu selection and inventory management. We develop a branch‐and‐bound algorithm to find exact solutions to the problem. To generate bounds, we utilize a dual ascent procedure which exploits the special structure of the problem. Information from the dual and recovered primal solutions are used to select branching variables. We generate strong valid inequalities and use them to fix other variables at each branching step. Results of tests performed on reasonably sized problems are presented. © 1999 John Wiley & Sons, Inc. Naval Research Logistics 46: 19–37, 1999  相似文献   

16.
We consider the optimal control of a production inventory‐system with a single product and two customer classes where items are produced one unit at a time. Upon arrival, customer orders can be fulfilled from existing inventory, if there is any, backordered, or rejected. The two classes are differentiated by their backorder and lost sales costs. At each decision epoch, we must determine whether or not to produce an item and if so, whether to use this item to increase inventory or to reduce backlog. At each decision epoch, we must also determine whether or not to satisfy demand from a particular class (should one arise), backorder it, or reject it. In doing so, we must balance inventory holding costs against the costs of backordering and lost sales. We formulate the problem as a Markov decision process and use it to characterize the structure of the optimal policy. We show that the optimal policy can be described by three state‐dependent thresholds: a production base‐stock level and two order‐admission levels, one for each class. The production base‐stock level determines when production takes place and how to allocate items that are produced. This base‐stock level also determines when orders from the class with the lower shortage costs (Class 2) are backordered and not fulfilled from inventory. The order‐admission levels determine when orders should be rejected. We show that the threshold levels are monotonic (either nonincreasing or nondecreasing) in the backorder level of Class 2. We also characterize analytically the sensitivity of these thresholds to the various cost parameters. Using numerical results, we compare the performance of the optimal policy against several heuristics and show that those that do not allow for the possibility of both backordering and rejecting orders can perform poorly.© 2010 Wiley Periodicals, Inc. Naval Research Logistics 2010  相似文献   

17.
We present an algorithm for solving a specially structured nonlinear integer resource allocation problem. This problem was motivated by a capacity planning study done at a large Health Maintenance Organization in Texas. Specifically, we focus on a class of nonlinear resource allocation problems that involve the minimization of a convex function over one general convex constraint, a set of block diagonal convex constraints, and bounds on the integer variables. The continuous variable problem is also considered. The continuous problem is solved by taking advantage of the structure of the Karush‐Kuhn‐Tucker (KKT) conditions. This method for solving the continuous problem is then incorporated in a branch and bound algorithm to solve the integer problem. Various reoptimization results, multiplier bounding results, and heuristics are used to improve the efficiency of the algorithms. We show how the algorithms can be extended to obtain a globally optimal solution to the nonconvex version of the problem. We further show that the methods can be applied to problems in production planning and financial optimization. Extensive computational testing of the algorithms is reported for a variety of applications on continuous problems with up to 1,000,000 variables and integer problems with up to 1000 variables. © 2003 Wiley Periodicals, Inc. Naval Research Logistics 50: 770–792, 2003.  相似文献   

18.
We consider a decentralized distribution channel where demand depends on the manufacturer‐chosen quality of the product and the selling effort chosen by the retailer. The cost of selling effort is private information for the retailer. We consider three different types of supply contracts in this article: price‐only contract where the manufacturer sets a wholesale price; fixed‐fee contract where manufacturer sells at marginal cost but charges a fixed (transfer) fee; and, general franchise contract where manufacturer sets a wholesale price and charges a fixed fee as well. The fixed‐fee and general franchise contracts are referred to as two‐part tariff contracts. For each contract type, we study different contract forms including individual, menu, and pooling contracts. In the analysis of the different types and forms of contracts, we show that the price only contract is dominated by the general franchise menu contract. However, the manufacturer may prefer to offer the fixed‐fee individual contract as compared to the general franchise contract when the retailer's reservation utility and degree of information asymmetry in costs are high. © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   

19.
This paper deals with a two‐person zero‐sum game called a search allocation game, where a searcher and a target participate, taking account of false contacts. The searcher distributes his search effort in a search space in order to detect the target. On the other hand, the target moves to avoid the searcher. As a payoff of the game, we take the cumulative amount of search effort weighted by the target distribution, which can be derived as an approximation of the detection probability of the target. The searcher's strategy is a plan of distributing search effort and the target's is a movement represented by a path or transition probability across the search space. In the search, there are false contacts caused by environmental noises, signal processing noises, or real objects resembling true targets. If they happen, the searcher must take some time for their investigation, which interrupts the search for a while. There have been few researches dealing with search games with false contacts. In this paper, we formulate the game into a mathematical programming problem to obtain its equilibrium point. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   

20.
A simultaneous non‐zero‐sum game is modeled to extend the classical network interdiction problem. In this model, an interdictor (e.g., an enforcement agent) decides how much of an inspection resource to spend along each arc in the network to capture a smuggler. The smuggler (randomly) selects a commodity to smuggle—a source and destination pair of nodes, and also a corresponding path for traveling between the given pair of nodes. This model is motivated by a terrorist organization that can mobilize its human, financial, or weapon resources to carry out an attack at one of several potential target destinations. The probability of evading each of the network arcs nonlinearly decreases in the amount of resource that the interdictor spends on its inspection. We show that under reasonable assumptions with respect to the evasion probability functions, (approximate) Nash equilibria of this game can be determined in polynomial time; depending on whether the evasion functions are exponential or general logarithmically‐convex functions, exact Nash equilibria or approximate Nash equilibria, respectively, are computed. © 2017 Wiley Periodicals, Inc. Naval Research Logistics 64: 139–153, 2017  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号