首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   332篇
  免费   49篇
  2021年   2篇
  2019年   11篇
  2018年   4篇
  2017年   15篇
  2016年   19篇
  2015年   15篇
  2014年   15篇
  2013年   68篇
  2012年   16篇
  2011年   21篇
  2010年   22篇
  2009年   18篇
  2008年   22篇
  2007年   31篇
  2006年   20篇
  2005年   14篇
  2004年   18篇
  2003年   12篇
  2002年   14篇
  2001年   10篇
  2000年   11篇
  1999年   2篇
  1998年   1篇
排序方式: 共有381条查询结果,搜索用时 15 毫秒
21.
We study a setting with a single type of resource and with several players, each associated with a single resource (of this type). Unavailability of these resources comes unexpectedly and with player‐specific costs. Players can cooperate by reallocating the available resources to the ones that need the resources most and let those who suffer the least absorb all the costs. We address the cost savings allocation problem with concepts of cooperative game theory. In particular, we formulate a probabilistic resource pooling game and study them on various properties. We show that these games are not necessarily convex, do have non‐empty cores, and are totally balanced. The latter two are shown via an interesting relationship with Böhm‐Bawerk horse market games. Next, we present an intuitive class of allocation rules for which the resulting allocations are core members and study an allocation rule within this class of allocation rules with an appealing fairness property. Finally, we show that our results can be applied to a spare parts pooling situation.  相似文献   
22.
We consider the problem of scheduling a set of n jobs on a single batch machine, where several jobs can be processed simultaneously. Each job j has a processing time pj and a size sj. All jobs are available for processing at time 0. The batch machine has a capacity D. Several jobs can be batched together and processed simultaneously, provided that the total size of the jobs in the batch does not exceed D. The processing time of a batch is the largest processing time among all jobs in the batch. There is a single vehicle available for delivery of the finished products to the customer, and the vehicle has capacity K. We assume that K = rD, where and r is an integer. The travel time of the vehicle is T; that is, T is the time from the manufacturer to the customer. Our goal is to find a schedule of the jobs and a delivery plan so that the service span is minimized, where the service span is the time that the last job is delivered to the customer. We show that if the jobs have identical sizes, then we can find a schedule and delivery plan in time such that the service span is minimum. If the jobs have identical processing times, then we can find a schedule and delivery plan in time such that the service span is asymptotically at most 11/9 times the optimal service span. When the jobs have arbitrary processing times and arbitrary sizes, then we can find a schedule and delivery plan in time such that the service span is asymptotically at most twice the optimal service span. We also derive upper bounds of the absolute worst‐case ratios in both cases. © 2015 Wiley Periodicals, Inc. Naval Research Logistics 62: 470–482, 2015  相似文献   
23.
We consider a partially observable degrading system subject to condition monitoring and random failure. The system's condition is categorized into one of three states: a healthy state, a warning state, and a failure state. Only the failure state is observable. While the system is operational, vector data that is stochastically related to the system state is obtained through condition monitoring at regular sampling epochs. The state process evolution follows a hidden semi‐Markov model (HSMM) and Erlang distribution is used for modeling the system's sojourn time in each of its operational states. The Expectation‐maximization (EM) algorithm is applied to estimate the state and observation parameters of the HSMM. Explicit formulas for several important quantities for the system residual life estimation such as the conditional reliability function and the mean residual life are derived in terms of the posterior probability that the system is in the warning state. Numerical examples are presented to demonstrate the applicability of the estimation procedure and failure prediction method. A comparison results with hidden Markov modeling are provided to illustrate the effectiveness of the proposed model. © 2015 Wiley Periodicals, Inc. Naval Research Logistics 62: 190–205, 2015  相似文献   
24.
In scheduling problems with two competing agents, each one of the agents has his own set of jobs to be processed and his own objective function, and both share a common processor. In the single‐machine problem studied in this article, the goal is to find a joint schedule that minimizes the total deviation of the job completion times of the first agent from a common due‐date, subject to an upper bound on the maximum deviation of job completion times of the second agent. The problem is shown to be NP‐hard even for a nonrestrictive due‐date, and a pseudopolynomial dynamic program is introduced and tested numerically. For the case of a restrictive due‐date (a sufficiently small due‐date that may restrict the number of early jobs), a faster pseudopolynomial dynamic program is presented. We also study the multiagent case, which is proved to be strongly NP‐hard. A simple heuristic for this case is introduced, which is tested numerically against a lower bound, obtained by extending the dynamic programming algorithm. © 2013 Wiley Periodicals, Inc. Naval Research Logistics 61: 1–16, 2014  相似文献   
25.
Service systems such as call centers and hospital emergency rooms typically have strongly time‐varying arrival rates. Thus, a nonhomogeneous Poisson process (NHPP) is a natural model for the arrival process in a queueing model for performance analysis. Nevertheless, it is important to perform statistical tests with service system data to confirm that an NHPP is actually appropriate, as emphasized by Brown et al. [8]. They suggested a specific statistical test based on the Kolmogorov–Smirnov (KS) statistic after exploiting the conditional‐uniform (CU) property to transform the NHPP into a sequence of i.i.d. random variables uniformly distributed on [0,1] and then performing a logarithmic transformation of the data. We investigate why it is important to perform the final data transformation and consider what form it should take. We conduct extensive simulation experiments to study the power of these alternative statistical tests. We conclude that the general approach of Brown et al. [8] is excellent, but that an alternative data transformation proposed by Lewis [22], drawing upon Durbin [10], produces a test of an NHPP test with consistently greater power. We also conclude that the KS test after the CU transformation, without any additional data transformation, tends to be best to test against alternative hypotheses that primarily differ from an NHPP only through stochastic and time dependence. © 2014 Wiley Periodicals, Inc. Naval Research Logistics 61: 66–90, 2014  相似文献   
26.
We develop the first approximation algorithm with worst‐case performance guarantee for capacitated stochastic periodic‐review inventory systems with setup costs. The structure of the optimal control policy for such systems is extremely complicated, and indeed, only some partial characterization is available. Thus, finding provably near‐optimal control policies has been an open challenge. In this article, we construct computationally efficient approximate optimal policies for these systems whose demands can be nonstationary and/or correlated over time, and show that these policies have a worst‐case performance guarantee of 4. We demonstrate through extensive numerical studies that the policies empirically perform well, and they are significantly better than the theoretical worst‐case guarantees. We also extend the analyses and results to the case with batch ordering constraints, where the order size has to be an integer multiple of a base load. © 2014 Wiley Periodicals, Inc. Naval Research Logistics 61: 304–319, 2014  相似文献   
27.
We consider the problem of scheduling a set of jobs on a single machine subject to random breakdowns. We focus on the preemptive‐repeat model, which addresses the situation where, if a machine breaks down during the processing of a job, the work done on the job prior to the breakdown is lost and the job will have to be started from the beginning again when the machine resumes its work. We allow that (i) the uptimes and downtimes of the machine follow general probability distributions, (ii) the breakdown process of the machine depends upon the job being processed, (iii) the processing times of the jobs are random variables following arbitrary distributions, and (iv) after a breakdown, the processing time of a job may either remain a same but unknown amount, or be resampled according to its probability distribution. We first derive the optimal policy for a class of problems under the criterion to maximize the expected discounted reward earned from completing all jobs. The result is then applied to further obtain the optimal policies for other due date‐related criteria. We also discuss a method to compute the moments and probability distributions of job completion times by using their Laplace transforms, which can convert a general stochastic scheduling problem to its deterministic equivalent. The weighted squared flowtime problem and the maintenance checkup and repair problem are analyzed as applications. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004  相似文献   
28.
There is a finite cyclic graph. The hider chooses one of all nodes except the specified one, and he hides an (immobile) object there. At the beginning the seeker is at the specified node. After the seeker chooses an ordering of the nodes except the specified one, he examines each nodes in that order until he finds the object, traveling along edges. It costs an amount when he moves from a node to an adjacent one and also when he checks a node. While the hider wishes to maximize the sum of the traveling costs and the examination costs which are required to find the object, the seeker wishes to minimize it. The problem is modeled as a two‐person zero‐sum game. We solve the game when unit costs (traveling cost + examination cost) have geometrical relations depending on nodes. Then we give properties of optimal strategies of both players. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004.  相似文献   
29.
We consider the problem of scheduling customer orders in a flow shop with the objective of minimizing the sum of tardiness, earliness (finished goods inventory holding), and intermediate (work‐in‐process) inventory holding costs. We formulate this problem as an integer program, and based on approximate solutions to two different, but closely related, Dantzig‐Wolfe reformulations, we develop heuristics to minimize the total cost. We exploit the duality between Dantzig‐Wolfe reformulation and Lagrangian relaxation to enhance our heuristics. This combined approach enables us to develop two different lower bounds on the optimal integer solution, together with intuitive approaches for obtaining near‐optimal feasible integer solutions. To the best of our knowledge, this is the first paper that applies column generation to a scheduling problem with different types of strongly ????‐hard pricing problems which are solved heuristically. The computational study demonstrates that our algorithms have a significant speed advantage over alternate methods, yield good lower bounds, and generate near‐optimal feasible integer solutions for problem instances with many machines and a realistically large number of jobs. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004.  相似文献   
30.
An age‐dependent repair model is proposed. The notion of the “calendar age” of the product and the degree of repair are used to define the virtual age of the product. The virtual failure rate function and the virtual hazard function related to the lifetime of the product are discussed. Under a nonhomogeneous Poisson process scenario the expected warranty costs for repairable products associated with linear pro‐rata, nonrenewing free replacement and renewing free replacement warranties are evaluated. Illustration of the results is given by numerical and graphical examples. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号