首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   9篇
  2015年   2篇
  2014年   2篇
  2013年   1篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
  2003年   1篇
  1997年   1篇
排序方式: 共有10条查询结果,搜索用时 14 毫秒
1
1.
研发了一种新的音圈电机驱动的超精密快刀伺服系统,行程达到30mm,最大加速度为920m/s2。通过实验手段获得系统的运动模型,用于控制器的设计。针对一类典型的光学复杂结构曲面-微小透镜阵列进行加工,并对加工结果进行测试与分析。测试结果表明,所研发的快刀伺服系统达到了加工技术要求,为该系统在实际加工中更广泛的应用打下了基础。  相似文献   
2.
异形燃气涡轮轴承的外环滚道截面形状为波瓣形,精度要求很高。本文采用的微位移进给驱动机构具有高频响、高精度、大行程,且控制简便的特点。在研究陶瓷结合剂CBN砂轮修整及磨削工艺的基础上,采用前馈与速度反馈的控制方法,对工件进行了加工,得到了较好的加工表面质量和滚道轮廓曲线  相似文献   
3.
超精密单点金刚石飞刀切削技术是一种比较新颖的微槽类结构加工方式。在飞切过程中,切削力是切削过程中重要的物理量,对加工后的表面质量、刀具磨损等有着直接影响。提出了一种基于直角微切削理论的动态微槽类结构飞切的力学模型,基于微切削理论,得到了前、后刀面切削力的理论模型。根据飞切的几何运动特征,建立了飞切过程中剪切角的计算模型,并根据单圈飞切实验得到了飞切过程中剪切面的变化规律。为了验证模型的正确性,采用不同切削参数进行了多圈重叠飞切实验,对切削力进行了测量和分析。实验得到的切削力大小和变化规律与理论模型计算得到的基本一致,证明了该切削力模型的有效性。  相似文献   
4.
基于快刀伺服系统的超精密金刚石车削加工技术是光学自由曲面高效率、高精密的加工手段。本文介绍了一种新的音圈电机驱动的超精密快刀伺服系统,行程达到30mm,最大加速度为920m/s2。通过实验手段获得了系统的运动模型,来用于控制器的设计。针对一类典型的光学自由曲面-微透镜阵列进行了加工,并对加工结果进行了测试与分析。测试结果表明,所研制的快刀伺服系统达到了加工技术要求,为以后该系统在实际加工中更广泛的应用研究打下了基础。  相似文献   
5.
设计了一种用于精密转台的新型自补偿圆锥形液体静压轴承,并完成了轴承的制造与性能测试。采用流量平衡原理推导了轴承设计公式,得到了轴向和径向的最优刚度及其优化条件,计入制造误差对轴承承载性能进行了仿真,并测试了轴承的刚度和回转精度。结果表明:轴承刚度受到节流间隙与承载间隙的流阻比以及油腔间内流系数影响,流阻比存在最优值,而内流系数越小,对刚度越有利;计入制造误差的仿真模型能够有效预测轴承刚度范围。  相似文献   
6.
热压多晶氟化镁的磁流变抛光研究   总被引:2,自引:1,他引:1       下载免费PDF全文
热压多晶氟化镁是一种被广泛应用的红外光学材料.磁流变抛光因其抛光效率高、磨头无磨损、可实现确定性加工等优点而日益成为倍受瞩目的超精密光整加工技术.在利用传统抛光方法得到热压多晶氟化镁的抛光特性的基础上配制了适用于该材料的磁流变抛光液.通过抛光实验证明,与传统抛光方法相比,采用磁流变抛光方法对热压多晶氟化镁进行抛光,可以得到较好抛光表面质量,并且抛光的效率也大大提高.  相似文献   
7.
慢刀伺服车削技术是一种特殊的创成加工方法,采用C轴、X轴、Z轴联动的方式在极坐标或圆柱坐标内可车削加工自由曲面光学元件。但是由于各种误差因素的影响,使用慢刀伺服技术仅加工一次获得的光学元件可能不满足精度指标。为此需要研究能够进一步提升慢刀伺服车削加工精度的误差补偿技术。Zernike多项式是面形分析与光学分析之间的理想接口工具,因此本文使用Zernike多项式拟合的方法处理慢刀伺服车削加工的误差,并根据慢刀伺服加工技术的特点,建立慢刀伺服车削加工的误差补偿算法。实验结果表明,基于Zernike多项式拟合的慢刀伺服车削加工误差补偿技术可有效地针对加工中产生的特定误差进行补偿,从而提高自由曲面车削加工精度。  相似文献   
8.
研制了用于加工非回转对称光学元件的快轴伺服系统(FAS)的整体结构及其控制系统,系统具备较大行程和高工作频率,最大的行程可达到30mm。系统采用了音圈电机驱动的气体静压轴承技术、线性电流放大器、高分辨率编码器以及高速控制系统。对不同截面形状气浮导轨的静、动态特性进行了有限元分析。系统采用PID反馈和速度/加速度前馈控制方法来改善系统的动态性能。FAS系统0.1mm阶跃响应的上升时间为2ms,最大超调量为0.4%,稳态时间为4ms,对铝件进行超精密切削实验,表面粗糙度可达Ra24nm,实验结果表明系统具有较好的动态和切削特性。  相似文献   
9.
超精密车削加工中,影响工件表面形貌的主要因素有刀具的几何形状、进给速度、主轴转速、刀具与工件的相对振动等,考虑这些因素,对超精密加工的三维表面形貌进行建模,并通过仿真分析刀具轮廓在工件径向截面内可能发生的剪切现象。验证结果表明,用该模型仿真超精密端面车削的工件表面能得到较好的效果。利用该模型可以模拟刀具切削运动的轨迹、预测工件表面三维微观形貌及二维截面轮廓形状等表面特征,并可将其作为实际切削加工中切削参数优化的理论指导。  相似文献   
10.
光学阵列器件的慢刀伺服车削加工技术   总被引:3,自引:1,他引:2  
慢刀伺服技术是相对于快刀伺服提出的方法.采用C轴、X轴、Z轴联动的方法在极坐标或圆柱坐标内进行加工.光学阵列如微透镜阵列、微反射镜阵列在高速数据、声音和视频信号传输中具有重要作用.将光学阵列看作一个自由曲面,使用慢刀伺服车削技术一次加工成形,可以解决传统加工中将光学阵列分块加工后拼装和调整的困难.但是由于光学阵列表面形状复杂,其表面法线的突变可能会使机床运动超出伺服轴执行能力.根据慢刀伺服加工技术的特点,建立了伺服轴执行能力限制曲线,研究了不同刀具半径补偿方式对加工的影响.实验结果表明,根据机床伺服轴执,厅能力合理选择刀具半径补偿方式可实现微光学阵列器件高精度加工.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号