首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   2篇
  2017年   1篇
  2014年   1篇
  2012年   1篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  1997年   2篇
  1996年   3篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1990年   1篇
排序方式: 共有18条查询结果,搜索用时 15 毫秒
1.
2.
In this paper we present a new combinatorial problem, called minmax multidimensional knapsack problem (MKP), motivated by a military logistics problem. The logistics problem is a two‐period, two‐level, chance‐constrained problem with recourse. We show that the MKP is NP‐hard and develop a practically efficient combinatorial algorithm for solving it. We also show that under some reasonable assumptions regarding the operational setting of the logistics problem, the chance‐constrained optimization problem is decomposable into a series of MKPs that are solved separately. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   
3.
In this article, we study aging properties of parallel and series systems with a random number of components. We show that the decreasing likelihood ratio property is closed under the formation of random minima. We also show, by counterexamples, that other aging properties are not closed under the formation of random minima or maxima. Some mistakes in the literature are corrected. © 2014 Wiley Periodicals, Inc. Naval Research Logistics 61: 238–243, 2014  相似文献   
4.
We consider a multiperiod resource allocation problem, where a single resource is allocated over a finite planning horizon of T periods. Resource allocated to one period can be used to satisfy demand of that period or of future periods, but backordering of demand is not allowed. The objective is to allocate the resource as smoothly as possible throughout the planning horizon. We present two models: the first assumes that the allocation decision variables are continuous, whereas the second considers only integer allocations. Applications for such models are found, for example, in subassembly production planning for complex products in a multistage production environment. Efficient algorithms are presented to find optimal allocations for these models at an effort of O(T2). Among all optimal policies for each model, these algorithms find the one that carries the least excess resources throughout the planning horizon. © 1995 John Wiley & Sons, Inc.  相似文献   
5.
This article considers a particular printed circuit board (PCB) assembly system employing surface mount technology. Multiple, identical automatic placement machines, a variety of board types, and a large number of component types characterize the environment studied. The problem addressed is that of minimizing the makespan for assembling a batch of boards with a secondary objective of reducing the mean flow time. The approach adopted is that of grouping boards into production families, allocating component types to placement machines for each family, dividing of families into board groups with similar processing times, and the scheduling of groups. A complete setup is incurred only when changing over between board families. For the environment studied, precedence constraints on the order of component placement do not exist, and placement times are independent of feeder location. Heuristic solution procedures are proposed to create board subfamilies (groups) for which the component mounting times are nearly identical within a subfamily. Assignment of the same component type to multiple machines is avoided. The procedures use results from the theory of open-shop scheduling and parallel processor scheduling to sequence boards on machines. Note that we do not impose an open-shop environment but rather model the problem in the context of an open shop, because the order of component mountings is immaterial. Three procedures are proposed for allocating components to machines and subsequently scheduling boards on the machines. The first two procedures assign components to machines to balance total work load. For scheduling purposes, the first method groups boards into subfamilies to adhere to the assumptions of the open-shop model, and the second procedure assumes that each board is a subfamily and these are scheduled in order of shortest total processing time. The third procedure starts by forming board subfamilies based on total component similarity and then assigns components to validate the open-shop model. We compare the performance of the three procedures using estimated daily, two-day, and weekly production requirements by averaging quarterly production data for an actual cell consisting of five decoupled machines. © 1994 John Wiley & Sons, Inc.  相似文献   
6.
We consider open‐shop scheduling problems where operation‐processing times are a convex decreasing function of a common limited nonrenewable resource. The scheduler's objective is to determine the optimal job sequence on each machine and the optimal resource allocation for each operation in order to minimize the makespan. We prove that this problem is NP‐hard, but for the special case of the two‐machine problem we provide an efficient optimization algorithm. We also provide a fully polynomial approximation scheme for solving the preemptive case. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2006  相似文献   
7.
Classification among groups is a crucial problem in managerial decision making. Classification techniques are used in: identifying stressed firms, classifying among consumer types, and rating of firms' bonds, etc. Neural networks are recognized as important and emerging methodologies in the area of classification. In this paper, we study the effect of training sample size and the neural network topology on the classification capability of neural networks. We also compare neural network capabilities with those of commonly used statistical methodologies. Experiments were designed and carried out on two-group classification problems to find answers to these questions. The prediction capability of the neural network models are better than traditional statistical models. The learning capability of the neural networks is improving compared to traditional models because the discriminate function is more complex. For real world classification problems, the usage of neural networks is highly recommended, for two reasons: learning capability and flexibility. Learning capability: Neural network classifies better in sterile experiments as performed in this research. Flexibility: Real life data are rarely not contaminated with noise, such as unknown distributions, and missing variables, etc. Neural networks differ from a statistical model that it is not dependent on any assumption concerning the data set distribution. © 1997 John Wiley & Sons, Inc. Naval Research Logistics 44: 699–717, 1997  相似文献   
8.
In this article we report on numerical experiments conducted to assess the performance of c-programming algorithms for generalized linear programming problems involving the maximization of composite-convex objective functions. The results indicate that the standard parametric sensitivity analysis techniques of the simplex method can play a central role in such algorithms. We also comment on issues concerning the use of commercial LP packages to solve problems of this type. © 1996 John Wiley & Sons, Inc.  相似文献   
9.
Many attempts have been made in the past to obtain estimates for the weights and ratings values of a multicriteria linear utility function. In particular, the problem arises when both criteria importance and alternatives' ratings are expressed in a qualitative ordinal manner. This article proposes an extreme-point approach for obtaining the overall ratings in the presence of ordinal preferences both for the criteria importance and the alternatives' rankings. In particular it is shown that Borda's method of scores is obtained as a special case. © 1996 John Wiley & Sons, Inc.  相似文献   
10.
We analyze an interdiction scenario where an interceptor attempts to catch an intruder as the intruder moves through the area of interest. A motivating example is the detection and interdiction of drug smuggling vessels in the Eastern Pacific and Caribbean. We study two models in this article. The first considers a nonstrategic target that moves through the area without taking evasive action to avoid the interdictor. We determine the optimal location the interceptor should position itself to best respond when a target arrives. The second model analyzes the strategic interaction between the interceptor and intruder using a Blotto approach. The intruder chooses a route to travel on and the interceptor chooses a route to patrol. We model the interaction as a two‐player game with a bilinear payoff function. We compute the optimal strategy for both players and examine several extensions. © 2017 Wiley Periodicals, Inc. Naval Research Logistics, 64: 29–40, 2017  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号