首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   5篇
  2011年   1篇
  2009年   1篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  2003年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
Si3 N4基复相陶瓷天线罩材料的制备及性能   总被引:1,自引:0,他引:1       下载免费PDF全文
基于高马赫数导弹天线罩为应用背景,以Si粉、BN粉、SiO2粉为主要原料,采用反应烧结法制备Si3N4基复相陶瓷材料,探讨了原料组成、成型工艺及坯体密度对材料性能的影响。试验结果表明:当原料中Si、BN和SiO2分别为55%、30%和10%时,材料强度可达96.7MPa,断裂韧性可达1.80MPa.m1/2。同时材料具有良好的介电性能及热物理性能。  相似文献   
2.
合成了混杂聚硼硅氮烷(H-PBSZ)并对其结构进行了分析,分析了其交联过程,并采用不同的工艺使其交联固化,研究了交联压力对产物的结构、形貌以及表观密度的影响。结果表明,H-PBSZ结构中含有B-N、Si-N、B-H、N-H以及Si-H等化学键,随着温度的升高,B-H、N-H以及Si-H键会发生断裂;交联过程中,先驱体会放出大量的气体,交联产物的致密度受气泡大小及其速度的影响;高压交联可以减小所放出的气泡的体积,减缓其上升的速度,并可抑制含氢键的断裂反应,降低气体的放出量,从而制得较高致密度的交联产物。  相似文献   
3.
单层结构陶瓷天线罩材料的宽频透波性能设计   总被引:1,自引:0,他引:1       下载免费PDF全文
依据天线罩对宽频带透波性能的要求,采用传输线理论,建立了单层结构天线罩平板材料透波率的计算方法.对单层结构天线罩材料的介电性能参数进行了优化设计,确定了在2~18 GHz频带,0~40°入射角范围内满足透波率要求的最优介电性能参数.设计结果表明,当材料的介电常数ε≤3.0,损耗角正切tanδ≤0.02时,具有最佳厚度的...  相似文献   
4.
法国军队的费兰计划已经进入了鉴定阶段,作为未来法国陆军单兵作战系统的费兰离我们已并不遥远。第一批该系统将于2006年装备部队,从而使法国陆军步兵部队的作战能力得到改善。让-路易·普罗姆(Jean-Louis PROME)将带我们去见见费兰——法兰西共和国武装力量的一位“明日之星”。  相似文献   
5.
全氢聚硅氮烷的合成与表征   总被引:1,自引:0,他引:1       下载免费PDF全文
采用二氢二氯硅烷氨解法合成了氮化硅陶瓷先驱体全氢聚硅氮烷,并用红外光谱、凝胶渗透色谱、热重、X射线衍射和元素分析等进行了表征。所合成的先驱体低聚物的分子骨架为[SiH2NH]n,数均分子量为106,重均分子量为178。固化后的先驱体在氮气下1000℃裂解转变为棕色粉末,陶瓷产率78wt%。将陶瓷产物在氮气下1400℃处理后,其主要成分为α-Si3N4,并含有少量富余硅,化学经验式为SiN1.036O0.060C0.028。陶瓷产物在氮气下1600℃处理后的X射线衍射谱图表明,游离硅已基本消失,α-Si3N4衍射峰加强,但是没有观察到从α-Si3N4到β-Si3N4的相转变。  相似文献   
6.
采用先驱体转化法制备了三维石英纤维增强氮化物基复合材料(3D SiO2f/Si3N4-BN),用等离子射流烧蚀方法研究了复合材料的烧蚀性能,运用扫描电镜及能谱仪对烧蚀表面微观形貌进行了观察和分析。结果表明氮化物基复合材料在高压高热流等离子体烧蚀下线烧蚀率为0.91mm/s,石英纤维熔融并被吹除带走了大量的热量,熔融层抑制了基体的机械剥蚀。基体由于强度高、升华温度高,延缓了熔融层的吹除,表明氮化物基复合材料是一种良好的耐高温烧蚀透波材料。  相似文献   
7.
氮化硼先驱体的合成及其热分解特性   总被引:1,自引:0,他引:1  
以硼氢化锂和硫酸铵为原料合成了氮化硼陶瓷先驱体环硼氮烷,以GC MS、FT IR和1H NMR等方法对其组成和结构进行了表征和确认.环硼氮烷在80℃左右保温72h后可以得到固化的聚硼氮烷,而后经热分解得到氮化硼陶瓷,以TG、FT IR、XRD等对聚硼氮烷的热分解行为进行了分析和表征.结果表明聚硼氮烷中仍然存在一定数量的B H和N H键,在后续的热分解过程中,会进一步发生脱氢反应,1400℃时陶瓷产率约为89.5%.B H键的断裂主要发生在800℃以前,N H键的消失则需要较高的温度.聚硼氮烷800℃热分解后无机化程度已经较高,其产物基本上为无定形的BN,在1600℃则形成h BN.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号