首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  2020年   1篇
  2019年   1篇
  2003年   1篇
  2002年   1篇
  1999年   1篇
排序方式: 共有5条查询结果,搜索用时 0 毫秒
1
1.
Today, many products are designed and manufactured to function for a long period of time before they fail. Determining product reliability is a great challenge to manufacturers of highly reliable products with only a relatively short period of time available for internal life testing. In particular, it may be difficult to determine optimal burn‐in parameters and characterize the residual life distribution. A promising alternative is to use data on a quality characteristic (QC) whose degradation over time can be related to product failure. Typically, product failure corresponds to the first passage time of the degradation path beyond a critical value. If degradation paths can be modeled properly, one can predict failure time and determine the life distribution without actually observing failures. In this paper, we first use a Wiener process to describe the continuous degradation path of the quality characteristic of the product. A Wiener process allows nonconstant variance and nonzero correlation among data collected at different time points. We propose a decision rule for classifying a unit as normal or weak, and give an economic model for determining the optimal termination time and other parameters of a burn‐in test. Next, we propose a method for assessing the product's lifetime distribution of the passed units. The proposed methodologies are all based only on the product's initial observed degradation data. Finally, an example of an electronic product, namely contact image scanner (CIS), is used to illustrate the proposed procedure. © 2002 Wiley Periodicals, Inc. Naval Research Logistics, 2003  相似文献   
2.
Within a reasonable life‐testing time, how to improve the reliability of highly reliable products is one of the great challenges to today's manufacturers. By using a resolution III experiment together with degradation test, Tseng, Hamada, and Chiao (1995) presented an interesting case study of improving the reliability of fluorescent lamps. However, in conducting such an experiment, they did not address the problem of how to choose the optimal settings of variables, such as sample size, inspection frequency, and termination time for each run, which are influential to the correct identification of significant factors and the experimental cost. Assuming that the product's degradation paths satisfy Wiener processes, this paper proposes a systematic approach to the aforementioned problem. First, an intuitively appealing identification rule is proposed. Next, under the constraints of a minimum probability of correct decision and a maximum probability of incorrect decision of the proposed identification rule, the optimum test plan (including the determinations of inspection frequency, sample size, and termination time for each run) can be obtained by minimizing the total experimental cost. An example is provided to illustrate the proposed method. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 514–526, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/nav.10024  相似文献   
3.
Degradation experiments are widely used to assess the reliability of highly reliable products which are not likely to fail under the traditional life tests. In order to conduct a degradation experiment efficiently, several factors, such as the inspection frequency, the sample size, and the termination time, need to be considered carefully. These factors not only affect the experimental cost, but also affect the precision of the estimate of a product's lifetime. In this paper, we deal with the optimal design of a degradation experiment. Under the constraint that the total experimental cost does not exceed a predetermined budget, the optimal decision variables are solved by minimizing the variance of the estimated 100pth percentile of the lifetime distribution of the product. An example is provided to illustrate the proposed method. Finally, a simulation study is conducted to investigate the robustness of this proposed method. © 1999 John Wiley & Sons, Inc. Naval Research Logistics 46: 689–706, 1999  相似文献   
4.
The accelerated degradation test (ADT) is an efficient tool for assessing the lifetime information of highly reliable products. However, conducting an ADT is very expensive. Therefore, how to conduct a cost-constrained ADT plan is a great challenging issue for reliability analysts. By taking the experimental cost into consideration, this paper proposes a semi-analytical procedure to determine the total sample size, testing stress levels, the measurement frequencies, and the number of measurements (within a degradation path) globally under a class of exponential dispersion degradation models. The proposed method is also extended to determine the global planning of a three-level compromise plan. The advantage of the proposed method not only provides better design insights for conducting an ADT plan, but also provides an efficient algorithm to obtain a cost-constrained ADT plan, compared with conventional optimal plans by grid search algorithms.  相似文献   
5.
Gamma accelerated degradation tests (ADT) are widely used to assess timely lifetime information of highly reliable products with degradation paths that follow a gamma process. In the existing literature, there is interest in addressing the problem of deciding how to conduct an efficient, ADT that includes determinations of higher stress‐testing levels and their corresponding sample‐size allocations. The existing results mainly focused on the case of a single accelerating variable. However, this may not be practical when the quality characteristics of the product have slow degradation rates. To overcome this difficulty, we propose an analytical approach to address this decision‐making problem using the case of two accelerating variables. Specifically, based on the criterion of minimizing the asymptotic variance of the estimated q quantile of lifetime distribution of the product, we analytically show that the optimal stress levels and sample‐size allocations can be simultaneously obtained via a general equivalence theorem. In addition, we use a practical example to illustrate the proposed procedure.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号