首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  2013年   1篇
  2008年   1篇
  2004年   1篇
排序方式: 共有3条查询结果,搜索用时 36 毫秒
1
1.
We address infinite‐horizon models for oligopolies with competing retailers under demand uncertainty. We characterize the equilibrium behavior which arises under simple wholesale pricing schemes. More specifically, we consider a periodic review, infinite‐horizon model for a two‐echelon system with a single supplier servicing a network of competing retailers. In every period, each retailer faces a random demand volume, the distribution of which depends on his own retail price as well as those charged by possibly all competing retailers. We also derive various comparative statics results regarding the impact several exogenous system parameters (e.g., cost or distributional parameters) have on the equilibrium decisions of the retailers as well as their expected profits. We show that certain monotonicity properties, engrained in folklore as well as in known inventory models for centralized systems, may break down in decentralized chains under retailer competition. Our results can be used to optimize the aggregate profits in the supply chain (i.e., those of the supplier and all retailers) by implementing a specific wholesale pricing scheme. © 2003 Wiley Periodicals, Inc. Naval Research Logistics, 2004.  相似文献   
2.
We extend the noncooperative game associated with the cost spanning tree problem introduced by Bergantiños and Lorenzo (Math Method Oper Res 59(2004), 393–403) to situations where agents have budget restrictions. We study the Nash equilibria, subgame perfect Nash equilibria, and strong Nash equilibria of this game. © 2008 Wiley Periodicals, Inc. Naval Research Logistics 2008  相似文献   
3.
This article discusses a two‐player noncooperative nonzero‐sum inspection game. There are multiple sites that are subject to potential inspection by the first player (an inspector). The second player (potentially a violator) has to choose a vector of violation probabilities over the sites, so that the sum of these probabilities do not exceed one. An efficient method is introduced to compute all Nash equilibria parametrically in the amount of resource that is available to the inspector. Sensitivity analysis reveals nonmonotonicity of the equilibrium utility of the inspector, considered as a function of the amount of resource that is available to it; a phenomenon which is a variant of the well‐known Braess paradox. © 2013 Wiley Periodicals, Inc. Naval Research Logistics, 2013  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号