首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   3篇
  2019年   2篇
  2017年   2篇
  2014年   1篇
  2013年   2篇
  2005年   1篇
  2003年   1篇
排序方式: 共有9条查询结果,搜索用时 265 毫秒
1
1.
This article examines a problem faced by a firm procuring a material input or good from a set of suppliers. The cost to procure the material from any given supplier is concave in the amount ordered from the supplier, up to a supplier‐specific capacity limit. This NP‐hard problem is further complicated by the observation that capacities are often uncertain in practice, due for instance to production shortages at the suppliers, or competition from other firms. We accommodate this uncertainty in a worst‐case (robust) fashion by modeling an adversarial entity (which we call the “follower”) with a limited procurement budget. The follower reduces supplier capacity to maximize the minimum cost required for our firm to procure its required goods. To guard against uncertainty, the firm can “protect” any supplier at a cost (e.g., by signing a contract with the supplier that guarantees supply availability, or investing in machine upgrades that guarantee the supplier's ability to produce goods at a desired level), ensuring that the anticipated capacity of that supplier will indeed be available. The problem we consider is thus a three‐stage game in which the firm first chooses which suppliers' capacities to protect, the follower acts next to reduce capacity from unprotected suppliers, and the firm then satisfies its demand using the remaining capacity. We formulate a three‐stage mixed‐integer program that is well‐suited to decomposition techniques and develop an effective cutting‐plane algorithm for its solution. The corresponding algorithmic approach solves a sequence of scaled and relaxed problem instances, which enables solving problems having much larger data values when compared to standard techniques. © 2013 Wiley Periodicals, Inc. Naval Research Logistics, 2013  相似文献   
2.
建立了拦射攻击方式的矢量图和矢量方程,解算了某型飞机采用拦射方式发射中距雷达制导导弹攻击空中目标的工作式,推导了超低空和超高空目标的拦射攻击算法,并给出了拦射攻击的操纵程序及相应的平视显示器拦射攻击画面。在推导拦射工作式时还考虑了目标角坐标和距离等参数进行了数字滤波处理以满足实用性要求。  相似文献   
3.
A simultaneous non‐zero‐sum game is modeled to extend the classical network interdiction problem. In this model, an interdictor (e.g., an enforcement agent) decides how much of an inspection resource to spend along each arc in the network to capture a smuggler. The smuggler (randomly) selects a commodity to smuggle—a source and destination pair of nodes, and also a corresponding path for traveling between the given pair of nodes. This model is motivated by a terrorist organization that can mobilize its human, financial, or weapon resources to carry out an attack at one of several potential target destinations. The probability of evading each of the network arcs nonlinearly decreases in the amount of resource that the interdictor spends on its inspection. We show that under reasonable assumptions with respect to the evasion probability functions, (approximate) Nash equilibria of this game can be determined in polynomial time; depending on whether the evasion functions are exponential or general logarithmically‐convex functions, exact Nash equilibria or approximate Nash equilibria, respectively, are computed. © 2017 Wiley Periodicals, Inc. Naval Research Logistics 64: 139–153, 2017  相似文献   
4.
We study a stochastic interdiction model of Morton et al. IIE Transactions, 39 (2007):3–14 that locates radiation sensors at border crossings to detect and prevent the smuggling of nuclear material. In this model, an interdictor places sensors at customs checkpoints to minimize a potential smuggler's maximum probability of crossing a border undetected. We focus on a model variant in which the interdictor has different, and likely more accurate, perceptions of the system's parameters than the smuggler does. We introduce a model that is tighter and uses fewer constraints than that of Morton et al. We also develop a class of valid inequalities along with a corresponding separation procedure that can be used within a cutting‐plane approach to reduce computational effort. Computational results demonstrate the effectiveness of our approach.Copyright © 2014 Wiley Periodicals, Inc. Naval Research Logistics 61: 91–100, 2014  相似文献   
5.
We study a multi‐stage dynamic assignment interdiction (DAI) game in which two agents, a user and an attacker, compete in the underlying bipartite assignment graph. The user wishes to assign a set of tasks at the minimum cost, and the attacker seeks to interdict a subset of arcs to maximize the user's objective. The user assigns exactly one task per stage, and the assignment costs and interdiction impacts vary across stages. Before any stage commences in the game, the attacker can interdict arcs subject to a cardinality constraint. An interdicted arc can still be used by the user, but at an increased assignment cost. The goal is to find an optimal sequence of assignments, coupled with the attacker's optimal interdiction strategy. We prove that this problem is strongly NP‐hard, even when the attacker can interdict only one arc. We propose an exact exponential‐state dynamic‐programming algorithm for this problem as well as lower and upper bounds on the optimal objective function value. Our bounds are based on classical interdiction and robust optimization models, and on variations of the DAI game. We examine the efficiency of our algorithms and the quality of our bounds on a set of randomly generated instances. © 2017 Wiley Periodicals, Inc. Naval Research Logistics 64: 373–387, 2017  相似文献   
6.
A comprehensive maritime interdiction strategy to attack the insurgent's logistic system was a key element in the defeat of the Tamil Tigers. The campaign of maritime interdiction required the Sri Lankan Navy (SLN) to attack LTTE arms smuggling, sea piracy, and maritime terrorism. The SLN degraded the insurgency's robust maritime logistical network while also devising tactics to engage the maritime insurgents who reacted with swarm and suicide boat tactics. The efforts of the SLN forced the Tamil Tigers to confront the government's final land offensives with diminished resources, thus collapsing a three decades’ old insurgency in a matter of months.  相似文献   
7.
We describe the application of a decomposition based solution method to a class of network interdiction problems. The problem of maximizing the probability of sufficient disruption of the flow of information or goods in a network whose characteristics are not certain is shown to be solved effectively by applying a scenario decomposition method developed by Riis and Schultz [Comput Optim Appl 24 (2003), 267–287]. Computational results demonstrate the effectiveness of the algorithm and design decisions that result in speed improvements. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005.  相似文献   
8.
Information technology (IT) infrastructure relies on a globalized supply chain that is vulnerable to numerous risks from adversarial attacks. It is important to protect IT infrastructure from these dynamic, persistent risks by delaying adversarial exploits. In this paper, we propose max‐min interdiction models for critical infrastructure protection that prioritizes cost‐effective security mitigations to maximally delay adversarial attacks. We consider attacks originating from multiple adversaries, each of which aims to find a “critical path” through the attack surface to complete the corresponding attack as soon as possible. Decision‐makers can deploy mitigations to delay attack exploits, however, mitigation effectiveness is sometimes uncertain. We propose a stochastic model variant to address this uncertainty by incorporating random delay times. The proposed models can be reformulated as a nested max‐max problem using dualization. We propose a Lagrangian heuristic approach that decomposes the max‐max problem into a number of smaller subproblems, and updates upper and lower bounds to the original problem via subgradient optimization. We evaluate the perfect information solution value as an alternative method for updating the upper bound. Computational results demonstrate that the Lagrangian heuristic identifies near‐optimal solutions efficiently, which outperforms a general purpose mixed‐integer programming solver on medium and large instances.  相似文献   
9.
We consider the shortest path interdiction problem involving two agents, a leader and a follower, playing a Stackelberg game. The leader seeks to maximize the follower's minimum costs by interdicting certain arcs, thus increasing the travel time of those arcs. The follower may improve the network after the interdiction by lowering the costs of some arcs, subject to a cardinality budget restriction on arc improvements. The leader and the follower are both aware of all problem data, with the exception that the leader is unaware of the follower's improvement budget. The effectiveness of an interdiction action is given by the length of a shortest path after arc costs are adjusted by both the interdiction and improvement. We propose a multiobjective optimization model for this problem, with each objective corresponding to a different possible improvement budget value. We provide mathematical optimization techniques to generate a complete set of strategies that are Pareto‐optimal. Additionally, for the special case of series‐parallel graphs, we provide a dynamic‐programming algorithm for generating all Pareto‐optimal solutions.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号