首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Atomic Obsession: Nuclear Alarmism from Hiroshima to Al Qaeda, by John Mueller. Oxford University Press, 2009. 336 pages, $27.95.

Les armes nucléaires: Mythes et réalités [Nuclear Weapons: Myths and Realities], by Georges Le Guelte. Actes Sud, 2009. 390 pages, [euro]25.  相似文献   

2.
This paper studies a queueing system with a Markov arrival process with marked arrivals and PH‐distribution service times for each type of customer. Customers (regardless of their types) are served on a mixed first‐come‐first‐served (FCFS) and last‐come‐first‐served (LCFS) nonpreemptive basis. That is, when the queue length is N (a positive integer) or less, customers are served on an FCFS basis; otherwise, customers are served on an LCFS basis. The focus is on the stationary distribution of queue strings, busy periods, and waiting times of individual types of customers. A computational approach is developed for computing the stationary distribution of queue strings, the mean of busy period, and the means and variances of waiting times. The relationship between these performance measures and the threshold number N is analyzed in depth numerically. It is found that the variance of the virtual (actual) waiting time of an arbitrary customer can be reduced by increasing N. © 2000 John Wiley & Sons, Inc. Naval Research Logistics 47: 399–421, 2000  相似文献   

3.
Book Reviews     
Strategic Geography. By Hugh Faringdon. Routledge, London (1989), ISBN 0-415-00980-4, £40.00

Field Artillery and Firepower. By J. B. A. Bailey. The Military Press, Oxford (1989), ISBN 0-85066-810-7, £25.00 (hardback), ISBN 0-85066-811-5, £14.50 (paperback)

U.S.-Soviet Security Cooperation. Edited by Alexander L. George, Philip J. Farley and Alexander Dallin. Oxford University Press, New York (1988), ISBN 0-19-505397-4, £30.00 (hardback), $19.95 (paperback)

Non-production by Industry of Chemical-warfare Agents: Technical Verification under a Chemical Weapons Convention. Edited by S. J. Lundin. SIPRI/Oxford University Press, Oxford (1988), ISBN 0-19-829129-9, £19.50

Ireland's Terrorist Trauma: Interdisciplinary Perspectives. Edited by Alan O'Day and Yonah Alexander. Harvester Wheatsheaf, Hemel Hempstead (1989), ISBN 7450-049003, £27.50 ($48.65)

Pilots and Rebels: the Use of Aircraft in Unconventional Warfare 1918-1988. By P. A. Towle. Brassey's (UK), London (1989), ISBN 0-08-036712-7, £29.95 ($53.95)  相似文献   

4.
We study an (R, s, S) inventory control policy with stochastic demand, lost sales, zero lead‐time and a target service level to be satisfied. The system is modeled as a discrete time Markov chain for which we present a novel approach to derive exact closed‐form solutions for the limiting distribution of the on‐hand inventory level at the end of a review period, given the reorder level (s) and order‐up‐to level (S). We then establish a relationship between the limiting distributions for adjacent values of the reorder point that is used in an efficient recursive algorithm to determine the optimal parameter values of the (R, s, S) replenishment policy. The algorithm is easy to implement and entails less effort than solving the steady‐state equations for the corresponding Markov model. Point‐of‐use hospital inventory systems share the essential characteristics of the inventory system we model, and a case study using real data from such a system shows that with our approach, optimal policies with significant savings in inventory management effort are easily obtained for a large family of items.  相似文献   

5.
We consider scheduling a set of jobs with deadlines to minimize the total weighted late work on a single machine, where the late work of a job is the amount of processing of the job that is scheduled after its due date and before its deadline. This is the first study on scheduling with the late work criterion under the deadline restriction. In this paper, we show that (i) the problem is unary NP‐hard even if all the jobs have a unit weight, (ii) the problem is binary NP‐hard and admits a pseudo‐polynomial‐time algorithm and a fully polynomial‐time approximation scheme if all the jobs have a common due date, and (iii) some special cases of the problem are polynomially solvable.  相似文献   

6.
A 2‐dimensional rectangular (cylindrical) k‐within‐consecutive‐r × s‐out‐of‐m × n:F system is the rectangular (cylindrical) m × n‐system if the system fails whenever k components in a r × s‐submatrix fail. This paper proposes a recursive algorithm for the reliability of the 2‐dimensional k‐within‐consecutive‐r × s‐out‐m × n:F system, in the rectangular case and the cylindrical case. This algorithm requires min ( O (mkr(n?s)), O (nks(m?r))), and O (mkrn) computing time in the rectangular case and the cylindrical case, respectively. The proposed algorithm will be demonstrated and some numerical examples will be shown. © 2001 John Wiley & Sons, Inc. Naval Research Logistics 48: 625–637, 2001.  相似文献   

7.
Book reviews     
Military Helicopters. By E. J. Everett‐Heath, G. M. Moss, A. W. Mowat and K. E. Reid. Brassey's, London (1990), ISBN 0–08–037341–0 (hardcover), ISBN 0–08–036716‐X (flexicover), £22.50 (hardcover), £12.95 (flexicover)

The Killing Ground: the British Army, the Western Front and the Emergence of Modern Warfare 1900–1918. By Tim Travers. Unwin‐Hyman, London (1990), ISBN 0–04–4457367, £11.95

The Influence of S. L. A. Marshall on the United States Army. By Major F. D. G. Williams. TRADOC Historical Monograph Series, Fort Monroe, VA (1990)  相似文献   


8.
The problem of minimum makespan on an m machine jobshop with unit execution time (UET) jobs (m ≥ 3) is known to be strongly NP‐hard even with no setup times. We focus in this article on the two‐machine case. We assume UET jobs and consider batching with batch availability and machine‐dependent setup times. We introduce an efficient \begin{align*}(O(\sqrt{n}))\end{align*} algorithm, where n is the number of jobs. We then introduce a heuristic for the multimachine case and demonstrate its efficiency for two interesting instances. © 2011 Wiley Periodicals, Inc. Naval Research Logistics, 2011  相似文献   

9.
We consider a multi‐stage inventory system composed of a single warehouse that receives a single product from a single supplier and replenishes the inventory of n retailers through direct shipments. Fixed costs are incurred for each truck dispatched and all trucks have the same capacity limit. Costs are stationary, or more generally monotone as in Lippman (Management Sci 16, 1969, 118–138). Demands for the n retailers over a planning horizon of T periods are given. The objective is to find the shipment quantities over the planning horizon to satisfy all demands at minimum system‐wide inventory and transportation costs without backlogging. Using the structural properties of optimal solutions, we develop (1) an O(T2) algorithm for the single‐stage dynamic lot sizing problem; (2) an O(T3) algorithm for the case of a single‐warehouse single‐retailer system; and (3) a nested shortest‐path algorithm for the single‐warehouse multi‐retailer problem that runs in polynomial time for a given number of retailers. To overcome the computational burden when the number of retailers is large, we propose aggregated and disaggregated Lagrangian decomposition methods that make use of the structural properties and the efficient single‐stage algorithm. Computational experiments show the effectiveness of these algorithms and the gains associated with coordinated versus decentralized systems. Finally, we show that the decentralized solution is asymptotically optimal. © 2009 Wiley Periodicals, Inc. Naval Research Logistics 2009  相似文献   

10.
Motivated by applications to service systems, we develop simple engineering approximation formulas for the steady‐state performance of heavily loaded G/GI/n+GI multiserver queues, which can have non‐Poisson and nonrenewal arrivals and non‐exponential service‐time and patience‐time distributions. The formulas are based on recently established Gaussian many‐server heavy‐traffic limits in the efficiency‐driven (ED) regime, where the traffic intensity is fixed at ρ > 1, but the approximations also apply to systems in the quality‐and‐ED regime, where ρ > 1 but ρ is close to 1. Good performance across a wide range of parameters is obtained by making heuristic refinements, the main one being truncation of the queue length and waiting time approximations to nonnegative values. Simulation experiments show that the proposed approximations are effective for large‐scale queuing systems for a significant range of the traffic intensity ρ and the abandonment rate θ, roughly for ρ > 1.02 and θ > 2.0. © 2016 Wiley Periodicals, Inc. Naval Research Logistics 63: 187–217, 2016  相似文献   

11.
We study the scheduling situation in which a set of jobs subjected to release dates and deadlines are to be performed on a single machine. The objective is to minimize a piecewise linear objective function ∑jFj where Fj(Cj) corresponds to the cost of the completion of job j at time Cj. This class of function is very large and thus interesting both from a theoretical and practical point of view: It can be used to model total (weighted) completion time, total (weighted) tardiness, earliness and tardiness, etc. We introduce a new Mixed Integer Program (MIP) based on time interval decomposition. Our MIP is closely related to the well‐known time‐indexed MIP formulation but uses much less variables and constraints. Experiments on academic benchmarks as well as on real‐life industrial problems show that our generic MIP formulation is efficient. © 2009 Wiley Periodicals, Inc. Naval Research Logistics, 2009  相似文献   

12.
If the number of customers in a queueing system as a function of time has a proper limiting steady‐state distribution, then that steady‐state distribution can be estimated from system data by fitting a general stationary birth‐and‐death (BD) process model to the data and solving for its steady‐state distribution using the familiar local‐balance steady‐state equation for BD processes, even if the actual process is not a BD process. We show that this indirect way to estimate the steady‐state distribution can be effective for periodic queues, because the fitted birth and death rates often have special structure allowing them to be estimated efficiently by fitting parametric functions with only a few parameters, for example, 2. We focus on the multiserver Mt/GI/s queue with a nonhomogeneous Poisson arrival process having a periodic time‐varying rate function. We establish properties of its steady‐state distribution and fitted BD rates. We also show that the fitted BD rates can be a useful diagnostic tool to see if an Mt/GI/s model is appropriate for a complex queueing system. © 2015 Wiley Periodicals, Inc. Naval Research Logistics 62: 664–685, 2015  相似文献   

13.
The opportunistic maintenance of a k‐out‐of‐n:G system with imperfect preventive maintenance (PM) is studied in this paper, where partial failure is allowed. In many applications, the optimal maintenance actions for one component often depend on the states of the other components and system reliability requirements. Two new (τ, T) opportunistic maintenance models with the consideration of reliability requirements are proposed. In these two models, only minimal repairs are performed on failed components before time τ and the corrective maintenance (CM) of all failed components are combined with PM of all functioning but deteriorated components after τ; if the system survives to time T without perfect maintenance, it will be subject to PM at time T. Considering maintenance time, asymptotic system cost rate and availability are derived. The results obtained generalize and unify some previous research in this area. Application to aircraft engine maintenance is presented. © 2000 John Wiley & Sons;, Inc. Naval Research Logistics 47: 223–239, 2000  相似文献   

14.
The signature of a system with independent and identically distributed (i.i.d.) component lifetimes is a vector whose ith element is the probability that the ith component failure is fatal to the system. System signatures have been found to be quite useful tools in the study and comparison of engineered systems. In this article, the theory of system signatures is extended to versions of signatures applicable in dynamic reliability settings. It is shown that, when a working used system is inspected at time t and it is noted that precisely k failures have occurred, the vector s [0,1]nk whose jth element is the probability that the (k + j)th component failure is fatal to the system, for j = 1,2,2026;,nk, is a distribution‐free measure of the design of the residual system. Next, known representation and preservation theorems for system signatures are generalized to dynamic versions. Two additional applications of dynamic signatures are studied in detail. The well‐known “new better than used” (NBU) property of aging systems is extended to a uniform (UNBU) version, which compares systems when new and when used, conditional on the known number of failures. Sufficient conditions are given for a system to have the UNBU property. The application of dynamic signatures to the engineering practice of “burn‐in” is also treated. Specifically, we consider the comparison of new systems with working used systems burned‐in to a given ordered component failure time. In a reliability economics framework, we illustrate how one might compare a new system to one successfully burned‐in to the kth component failure, and we identify circumstances in which burn‐in is inferior (or is superior) to the fielding of a new system. © 2009 Wiley Periodicals, Inc. Naval Research Logistics, 2009  相似文献   

15.
16.
This paper presents a branch and bound algorithm for computing optimal replacement policies in a discrete‐time, infinite‐horizon, dynamic programming model of a binary coherent system with n statistically independent components, and then specializes the algorithm to consecutive k‐out‐of‐n systems. The objective is to minimize the long‐run expected average undiscounted cost per period. (Costs arise when the system fails and when failed components are replaced.) An earlier paper established the optimality of following a critical component policy (CCP), i.e., a policy specified by a critical component set and the rule: Replace a component if and only if it is failed and in the critical component set. Computing an optimal CCP is a optimization problem with n binary variables and a nonlinear objective function. Our branch and bound algorithm for solving this problem has memory storage requirement O(n) for consecutive k‐out‐of‐n systems. Extensive computational experiments on such systems involving over 350,000 test problems with n ranging from 10 to 150 find this algorithm to be effective when n ≤ 40 or k is near n. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 288–302, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/nav.10017  相似文献   

17.
We consider a firm which faces a Poisson customer demand and uses a base‐stock policy to replenish its inventories from an outside supplier with a fixed lead time. The firm can use a preorder strategy which allows the customers to place their orders before their actual need. The time from a customer's order until the date a product is actually needed is called commitment lead time. The firm pays a commitment cost which is strictly increasing and convex in the length of the commitment lead time. For such a system, we prove the optimality of bang‐bang and all‐or‐nothing policies for the commitment lead time and the base‐stock policy, respectively. We study the case where the commitment cost is linear in the length of the commitment lead time in detail. We show that there exists a unit commitment cost threshold which dictates the optimality of either a buy‐to‐order (BTO) or a buy‐to‐stock strategy. The unit commitment cost threshold is increasing in the unit holding and backordering costs and decreasing in the mean lead time demand. We determine the conditions on the unit commitment cost for profitability of the BTO strategy and study the case with a compound Poisson customer demand.  相似文献   

18.
This paper presents a branch‐and‐price algorithm for scheduling n jobs on m nonhomogeneous parallel machines with multiple time windows. An additional feature of the problem is that each job falls into one of ρ priority classes and may require two operations. The objective is to maximize the weighted number of jobs scheduled, where a job in a higher priority class has “infinitely” more weight or value than a job in a lower priority class. The methodology makes use of a greedy randomized adaptive search procedure (GRASP) to find feasible solutions during implicit enumeration and a two‐cycle elimination heuristic when solving the pricing subproblems. Extensive computational results are presented based on data from an application involving the use of communications relay satellites. Many 100‐job instances that were believed to be beyond the capability of exact methods, were solved within minutes. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2006  相似文献   

19.
We consider a processing network in which jobs arrive at a fork‐node according to a renewal process. Each job requires the completion of m tasks, which are instantaneously assigned by the fork‐node to m task‐processing nodes that operate like G/M/1 queueing stations. The job is completed when all of its m tasks are finished. The sojourn time (or response time) of a job in this G/M/1 fork‐join network is the total time it takes to complete the m tasks. Our main result is a closed‐form approximation of the sojourn‐time distribution of a job that arrives in equilibrium. This is obtained by the use of bounds, properties of D/M/1 and M/M/1 fork‐join networks, and exploratory simulations. Statistical tests show that our approximation distributions are good fits for the sojourn‐time distributions obtained from simulations. © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   

20.
This paper proposes a new model that generalizes the linear consecutive k‐out‐of‐r‐from‐n:F system to multistate case with multiple failure criteria. In this model (named linear multistate multiple sliding window system) the system consists of n linearly ordered multistate elements (MEs). Each ME can have different states: from complete failure up to perfect functioning. A performance rate is associated with each state. Several functions are defined for a set of integer numbers ρ in such a way that for each r ∈ ρ corresponding function fr produces negative values if the combination of performance rates of r consecutive MEs corresponds to the unacceptable state of the system. The system fails if at least one of functions fr for any r consecutive MEs for r ∈ ρ produces a negative value. An algorithm for system reliability evaluation is suggested which is based on an extended universal moment generating function. Examples of system reliability evaluation are presented. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号