首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
This study combines inspection and lot‐sizing decisions. The issue is whether to INSPECT another unit or PRODUCE a new lot. A unit produced is either conforming or defective. Demand need to be satisfied in full, by conforming units only. The production process may switch from a “good” state to a “bad” state, at constant rate. The proportion of conforming units in the good state is higher than in the bad state. The true state is unobservable and can only be inferred from the quality of units inspected. We thus update, after each inspection, the probability that the unit, next candidate for inspection, was produced while the production process was in the good state. That “good‐state‐probability” is the basis for our decision to INSPECT or PRODUCE. We prove that the optimal policy has a simple form: INSPECT only if the good‐state‐probability exceeds a control limit. We provide a methodology to calculate the optimal lot size and the expected costs associated with INSPECT and PRODUCE. Surprisingly, we find that the control limit, as a function of the demand (and other problem parameters) is not necessarily monotone. Also, counter to intuition, it is possible that the optimal action is PRODUCE, after revealing a conforming unit. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   

2.
The paper considers the economic lot scheduling problem (ELSP) where production facility is assumed to deteriorate, owing to aging, with an increasing failure rate. The time to shift from an “in‐control” state to an “out‐of‐control” state is assumed to be normally distributed. The system is scheduled to be inspected at the end of each production lot. If the process is found to be in an “out‐of‐control” state, then corrective maintenance is performed to restore it to an “in‐control” state before the start of the next production run. Otherwise, preventive maintenance is carried out to enhance system reliability. The ELSP is formulated under the capacity constraint taking into account the quality related cost due to possible production of non‐conforming items, process inspection, and maintenance costs. In order to find a feasible production schedule, both the common cycle and time‐varying lot sizes approaches are utilized. © 2003 Wiley Periodicals, Inc. Naval Research Logistics 50: 650–661, 2003  相似文献   

3.
Acceptance sampling plans are used to assess the quality of an ongoing production process, in addition to the lot acceptance. In this paper, we consider sampling inspection plans for monitoring the Markov‐dependent production process. We construct sequential plans that satisfy the usual probability requirements at acceptable quality level and rejectable quality level and, in addition, possess the minimum average sample number under semicurtailed inspection. As these plans result in large sample sizes, especially when the serial correlation is high, we suggest new plans called “systematic sampling plans.” The minimum average sample number systematic plans that satisfy the probability requirements are constructed. Our algorithm uses some simple recurrence relations to compute the required acceptance probabilities. The optimal systematic plans require much smaller sample sizes and acceptance numbers, compared to the sequential plans. However, they need larger production runs to make a decision. Tables for choosing appropriate sequential and systematic plans are provided. The problem of selecting the best systematic sampling plan is also addressed. The operating characteristic curves of some of the sequential and the systematic plans are compared, and are observed to be almost identical. © 2001 John Wiley & Sons, Inc. Naval Research Logistics 48: 451–467, 2001  相似文献   

4.
An EMQ model with a production process subject to random deterioration is considered. The process can be monitored through inspections, and both the lot size and the inspection schedule are subject to control. The “in-control” periods are assumed to be generally distributed and the inspections are imperfect, i.e., the true state of the process is not necessarily revealed through an inspection. The objective is the joint determination of the lot size and the inspection schedule, minimizing the long-run expected average cost per unit time. Both discrete and continuous cases are examined. A dynamic programming formulation is considered in the case where the inspections can be performed only at discrete times, which is typical for the parts industry. In the continuous case, an optimum inspection schedule is obtained for a given production time and given number of inspections by solving a nonlinear programming problem. A two-dimensional search procedure can be used to find the optimal policy. In the exponential case, the structure of the optimal inspection policy is established using Lagrange's method, and it is shown that the optimal inspection times can be found by solving a nonlinear equation. Numerical studies indicate that the optimal policy performs much better than the optimal policy with periodic inspections considered previously in the literature. The case of perfect inspections is discussed, and an extension of the results obtained previously in the literature is presented. © 1998 John Wiley & Sons, Inc. Naval Research Logistics 45: 165–186, 1998  相似文献   

5.
Traditionally continuous sampling plans have been evaluated according to relatively few criteria. These typically include the OC curve (on which AQL systems are based), the ASN, and the AOQ curve. These characteristics are all calculated under the assumption that the process is “in control” so that mathematically they are derived as long-term averages. Thus, any two plans which (long term) spend the same proportion of time on each type of sampling inspection will be identical relative to these criteria. This is true whether sampling from lots or doing unit-by-unit inspection. The goal is to first establish desirable additional criteria and then to develop methods to determine which procedure (of those which satisfy the standard criteria) is optimal relative to the new criteria. To be considered will be measures of a plan's ability to detect a sudden drop in quality (such as ARL).  相似文献   

6.
We develop an approximate planning model for a distributed computing network in which a control system oversees the assignment of information flows and tasks to a pool of shared computers, and describe several optimization applications using the model. We assume that the computers are multithreaded, and have differing architectures leading to varying and inconsistent processing rates. The model is based on a discrete‐time, continuous flow model developed by Graves [Oper Res 34 (1986), 522–533] which provides the steady‐state moments of production and work‐in‐queue quantities. We make several extensions to Graves' model to represent distributed computing networks. First, we approximately model control rules that are nonlinear functions of the work‐in‐queue at multiple stations through a linearization approach. Second, we introduce an additional noise term on production and show its use in modeling the discretization of jobs. Third, we model groups of heterogeneous computers as aggregate, “virtual computing cells” that process multiple tasks simultaneously, using a judiciously selected control rule. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005.  相似文献   

7.
In this article, we define a scheduling/packing problem called the Job Splitting Problem, motivated by the practices in the printing industry. There are n types of items to be produced on an m‐slot machine. A particular assignment of the types to the slots is called a “run” configuration and requires a setup cost. Once a run begins, the production continues according to that configuration and the “length” of the run represents the quantity produced in each slot during that run. For each unit of production in excess of demand, there is a waste cost. Our goal is to construct a production plan, i.e., a set of runs, such that the total setup and waste cost is minimized. We show that the problem is strongly NP‐hard and propose two integer programming formulations, several preprocessing steps, and two heuristics. We also provide a worst‐case bound for one of the heuristics. Extensive tests on real‐world and randomly generated instances show that the heuristics are both fast and effective, finding near‐optimal solutions. © 2010 Wiley Periodicals, Inc. Naval Research Logistics, 2010  相似文献   

8.
SPC(统计过程控制)作为一种先进的质量管理方法,在国外企业被广泛采用,目前国内也有众多企业开始推行.分析了实施SPC的重要性,根据SPC技术在推广应用中的主要工作内容,给出了导弹厚膜混合电路生产中SPC技术的应用方法,包括关键工序节点和工艺参数的确定、工艺参数数据的采集、控制图的使用、工序能力评价以及所采用的控制技术等实际应用方面的内容.  相似文献   

9.
In this study, we illustrate a real‐time approximate dynamic programming (RTADP) method for solving multistage capacity decision problems in a stochastic manufacturing environment, by using an exemplary three‐stage manufacturing system with recycle. The system is a moderate size queuing network, which experiences stochastic variations in demand and product yield. The dynamic capacity decision problem is formulated as a Markov decision process (MDP). The proposed RTADP method starts with a set of heuristics and learns a superior quality solution by interacting with the stochastic system via simulation. The curse‐of‐dimensionality associated with DP methods is alleviated by the adoption of several notions including “evolving set of relevant states,” for which the value function table is built and updated, “adaptive action set” for keeping track of attractive action candidates, and “nonparametric k nearest neighbor averager” for value function approximation. The performance of the learned solution is evaluated against (1) an “ideal” solution derived using a mixed integer programming (MIP) formulation, which assumes full knowledge of future realized values of the stochastic variables (2) a myopic heuristic solution, and (3) a sample path based rolling horizon MIP solution. The policy learned through the RTADP method turned out to be superior to polices of 2 and 3. © 2010 Wiley Periodicals, Inc. Naval Research Logistics 2010  相似文献   

10.
A “local” condition of winning (in the sense that the force ratio is changing to the advantage of one of the combatants) is shown to apply to all deterministic Lanchester-type models with two force-level variables. This condition involves the comparison of only the force ratio and the instantaneous force-change ratio. For no replacements and withdrawals, a combatant is winning “instantaneously” when the force ratio exceeds the differential casualty-exchange ratio. General outcome-prediction relations are developed from this “local” condition and applied to a nonlinear model for Helmbold-type combat between two homogeneous forces with superimposed effects of supporting fires not subject to attrition. Conditions under which the effects of the supporting fires “cancel out” are given.  相似文献   

11.
Military Standard 105D has been almost universally adopted by government and private consumers for the lot-by-lot sampling inspection of product which may be inspected on a dichotomoun basis The plan specifies, for each lot size, a random sample size and set of acceptance numbers (maximum allowable number of defectives in each sample). The acceptance numbers are based upon the binomial distribution and depend upon the quality required by the purchaser. Where several consecutive lots are submitted, a shift to less severe (“reduced”) inspection or more severe (“tightened”) inspection is specified when the ongoing quality is very high or low. Further experience permits a return to normal sampling from either of these states This paper examines the long range costs of such a sampling scheme. The three inspection types are considered as three distinct Markov chains, with periodic transitions from chain to chain. The expected sample size and the expected proportion of rejected product are determined as a function of the two parameters under control of the manufacturer, lot size and product quality. Some numerical examples are given which illustrate how to compute the overall cost of sampling inspection. Suggestions are made concerning the choice of parameters to minimize this cost.  相似文献   

12.
The routine inspection of facilities storing large numbers of identical items is modeled as a two‐person, sequential game. Timely detection of illegal activity is parameterized in terms of a critical time to detection, and equilibria are derived which provide inspection strategies. Necessary conditions for deterrence of illegal behavior are discussed. © 2001 John Wiley & Sons, Inc. Naval Research Logistics 48: 496–505, 2001  相似文献   

13.
We consider a production system comprising multiple stations (or workshops) such as an entry station, a set of work stations, a central station, and an exit station, which are arranged in a general configuration. A worker (or a vehicle tool) is assigned to each station, who sends a part from the station to the destination station according to the required process path of the part. Any part is allowed to visit a work station more than once if its process path requires. We propose a new control strategy with the push policy for instructing each worker to send a part and the kanban mechanism for controlling the work‐in‐process (WIP) in each work station. As all work stations have limited local buffers, the central station is used for storing blocked parts temporarily. Such a production system is modeled as an open queueing network in a general configuration with a Markovian part sending policy and a machine no blocking mechanism. The queueing network is analytically characterized. Some important performance measures are compared with other control strategies. A semi‐open decomposition approach is applied to the queueing network for computing the blocking probabilities when parts arrive at the work stations. An algorithm is developed based on the semi‐open decomposition approach. Numerical experiments show the quality of the solutions obtained by the algorithm as well as a property of a performance measure. © 2001 John Wiley & Sons, Inc. Naval Research Logistics 48: 128–143, 2001  相似文献   

14.
The Federal Aviation Administration (FAA) and the airline community within the United States have adopted a new paradigm for air traffic flow management, called Collaborative Decision Making (CDM). A principal goal of CDM is shared decision‐making responsibility between the FAA and airlines, so as to increase airline control over decisions that involve economic tradeoffs. So far, CDM has primarily led to enhancements in the implementation of Ground Delay Programs, by changing procedures for allocating slots to airlines and exchanging slots between airlines. In this paper, we discuss how these procedures may be formalized through appropriately defined optimization models. In addition, we describe how inter‐airline slot exchanges may be viewed as a bartering process, in which each “round” of bartering requires the solution of an optimization problem. We compare the resulting optimization problem with the current procedure for exchanging slots and discuss possibilities for increased decision‐making capabilities by the airlines. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2006  相似文献   

15.
We consider the integrated problem of optimally maintaining an imperfect, deteriorating sensor and the safety‐critical system it monitors. The sensor's costless observations of the binary state of the system become less informative over time. A costly full inspection may be conducted to perfectly discern the state of the system, after which the system is replaced if it is in the out‐of‐control state. In addition, a full inspection provides the opportunity to replace the sensor. We formulate the problem of adaptively scheduling full inspections and sensor replacements using a partially observable Markov decision process (POMDP) model. The objective is to minimize the total expected discounted costs associated with system operation, full inspection, system replacement, and sensor replacement. We show that the optimal policy has a threshold structure and demonstrate the value of coordinating system and sensor maintenance via numerical examples. © 2017 Wiley Periodicals, Inc. Naval Research Logistics 64: 399–417, 2017  相似文献   

16.
Optimal allocation and control of limited inspection capacity for multiple production processes are considered. The production processes, which operate independently but share inspection capacity, are subject to random failures and are partially observed through inspection. This study proposes an approach of stochastic allocation, using a Markov decision process, to minimize expected total discounted cost over an infinite time horizon. Both an optimal model and a disaggregate approximation model are introduced. The study provides some structural results and establishes that the control policy is of a threshold type. Numerical experiments demonstrate a significantly decreased amount of computational time required for the disaggregate approach when compared to the optimal solution, while generating very good control policies. © 2002 John Wiley & Sons, Inc. Naval Research Logistics, 49: 78–94, 2002; DOI 10.1002/nav.1049  相似文献   

17.
The Quality Measurement Plan (QMP) and the Universal Sampling Plan (USP) are the data analysis and sampling plans for the AT&T Technologies quality audit. This article describes QMP/USP, an acceptance sampling plan based on QMP and USP principles. QMPIUSP is a complete acceptance sampling system. It combines the elements of classical rectification inspection plans with those of MIL-STD-IOSD. There is no switching between plans, no tables of numbers to look through, and no discontinue state. QMP/USP is a computerized, self-contained system that features:
  • Acceptance decisions based on the QMP Bayes empirical Bayes analysis of current and past sampling result
  • Sample size selection based on USP, i.e., lot size, AQL, a cost ratio, the QMP analysis, and a budget constraint
  • Guaranteed AOQ
  • A complete statistical analysis of the quality process.
In this article, we describe the operation of QMP/USP and compare its performance with that of MIL-STD-IOSD. The comparison is made under many different quality environments with many metrics. Our results show that QMP/USP and MIL/STD/IOSD perform similarly for the environments where quality could be described as “in control”; and that QMPlUSP is superior in the environments where quality is “out of control”.  相似文献   

18.
Procedures are described which yield single and double sample Dodge-Romig [1] lot tolerance percent defective (LTPD) rectifying inspection plans. For the determination of such plans only a desk calculator and standard tables of the discrete probability distributions are required. Some advantages gained by using these procedures rather than the Dodge-Romig table include: (a) The Consumer's Risk is not limited to 0.10. (b) More choices of LTPD are available. (c) Smaller average total inspection is achieved by using a plan designed for specific “process average” and lot size rather than a compromise plan designed to cover intervals on these two parameters.  相似文献   

19.
We address the capacitated lot‐sizing and scheduling problem with setup times, setup carry‐over, back‐orders, and parallel machines as it appears in a semiconductor assembly facility. The problem can be formulated as an extension of the capacitated lot‐sizing problem with linked lot‐sizes (CLSPL). We present a mixed integer (MIP) formulation of the problem and a new solution procedure. The solution procedure is based on a novel “aggregate model,” which uses integer instead of binary variables. The model is embedded in a period‐by‐period heuristic and is solved to optimality or near‐optimality in each iteration using standard procedures (CPLEX). A subsequent scheduling routine loads and sequences the products on the parallel machines. Six variants of the heuristic are presented and tested in an extensive computational study. © 2009 Wiley Periodicals, Inc. Naval Research Logistics 2009  相似文献   

20.
A joint optimization of the production run length and preventive maintenance (PM) policy is studied for a deteriorating production system where the in‐control period follows a general probability distribution with non‐decreasing failure rate. In the literature, the sufficient conditions for the optimality of the equal‐interval PM schedule is explored to derive an optimal production run length and an optimal number of PM actions. Nevertheless, an exhaustive search may arise. In this study, based on the assumption that the conditions for the optimality of the equal‐interval PM schedule hold, we derive some structural properties for the optimal production/PM policy, which increases the efficiency of the solution procedure. These analyses have implications for the practical application of the production/PM model to be more available in practice. A numerical example of gamma shift distribution with non‐decreasing failure rates is used to illustrate the solution procedure, leading to some insight into the management process. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号