首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The sequential order statistics (SOS) are a good way to model the lifetimes of the components in a system when the failure of a component at time t affects the performance of the working components at this age t. In this article, we study properties of the lifetimes of the coherent systems obtained using SOS. Specifically, we obtain a mixture representation based on the signature of the system. This representation is used to obtain stochastic comparisons. To get these comparisons, we obtain some ordering properties for the SOS, which in this context represent the lifetimes of k‐out‐of‐n systems. In particular, we show that they are not necessarily hazard rate ordered. © 2011 Wiley Periodicals, Inc. Naval Research Logistics, 2011  相似文献   

2.
In this article, we carry out the stochastic comparison between coherent systems through the relative aging order when component lifetimes are independent and identically distributed. We make use of the signature to characterize the structure of coherent systems, and derive several sufficient conditions under which the compared systems with the common size can be ordered in the sense of relative aging. Specially, we present some scenarios wherein the better a coherent system is, the faster it ages. Moreover, we discuss the relative aging of dual systems as well. Several numerical examples are provided to illustrate the theoretical results. © 2017 Wiley Periodicals, Inc. Naval Research Logistics 64: 345–354, 2017  相似文献   

3.
We consider the classical problem of whether certain classes of lifetime distributions are preserved under the formation of coherent systems. Under the assumption of independent and identically distributed (i.i.d.) component lifetimes, we consider the NBUE (new better than used in expectation) and NWUE (new worse than used in expectation) classes. First, a necessary condition for a coherent system to preserve the NBUE class is given. Sufficient conditions are then obtained for systems satisfying this necessary condition. The sufficient conditions are satisfied for a collection of systems which includes all parallel systems, but the collection is shown to be strictly larger. We also prove that no coherent system preserves the NWUE class. As byproducts of our study, we obtain the following results for the case of i.i.d. component lifetimes: (a) the DFR (decreasing failure rate) class is preserved by no coherent systems other than series systems, and (b) the IMRL (increasing mean residual life) class is not preserved by any coherent systems. Generalizations to the case of dependent component lifetimes are briefly discussed.  相似文献   

4.
Following a review of the basic ideas in structural reliability, including signature‐based representation and preservation theorems for systems whose components have independent and identically distributed (i.i.d.) lifetimes, extensions that apply to the comparison of coherent systems of different sizes, and stochastic mixtures of them, are obtained. It is then shown that these results may be extended to vectors of exchangeable random lifetimes. In particular, for arbitrary systems of sizes m < n with exchangeable component lifetimes, it is shown that the distribution of an m‐component system's lifetime can be written as a mixture of the distributions of k‐out‐of‐n systems. When the system has n components, the vector of coefficients in this mixture representation is precisely the signature of the system defined in Samaniego, IEEE Trans Reliabil R–34 (1985) 69–72. These mixture representations are then used to obtain new stochastic ordering properties for coherent or mixed systems of different sizes. © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   

5.
Various methods and criteria for comparing coherent systems are discussed. Theoretical results are derived for comparing systems of a given order when components are assumed to have independent and identically distributed lifetimes. All comparisons rely on the representation of a system's lifetime distribution as a function of the system's “signature,” that is, as a function of the vector p= (p1, … , pn), where pi is the probability that the system fails upon the occurrence of the ith component failure. Sufficient conditions are provided for the lifetime of one system to be larger than that of another system in three different senses: stochastic ordering, hazard rate ordering, and likelihood ratio ordering. Further, a new preservation theorem for hazard rate ordering is established. In the final section, the notion of system signature is used to examine a recently published conjecture regarding componentwise and systemwise redundancy. © 1999 John Wiley & Sons, Inc. Naval Research Logistics 46: 507–523, 1999  相似文献   

6.
As a relevant topic in reliability theory, the preservation of aging properties under the formation of various coherent structures contributes to improving system performance through better structure design and more effective system maintenance. The classical research in this line usually focuses upon coherent systems with independent component lifetimes. Recently, some authors discussed the preservation of IFR, NBU, and DMRL in the setting of dependent component lifetimes. This paper further investigates sufficient conditions for coherent systems with dependent component lifetimes to preserve aging properties including NBUC, NBU (2), DMRL, and their dual versions. Some examples are presented to illustrate coherent structures and typical copula functions fulfilling the present sufficient conditions as well.  相似文献   

7.
The signature of a system with independent and identically distributed (i.i.d.) component lifetimes is a vector whose ith element is the probability that the ith component failure is fatal to the system. System signatures have been found to be quite useful tools in the study and comparison of engineered systems. In this article, the theory of system signatures is extended to versions of signatures applicable in dynamic reliability settings. It is shown that, when a working used system is inspected at time t and it is noted that precisely k failures have occurred, the vector s [0,1]nk whose jth element is the probability that the (k + j)th component failure is fatal to the system, for j = 1,2,2026;,nk, is a distribution‐free measure of the design of the residual system. Next, known representation and preservation theorems for system signatures are generalized to dynamic versions. Two additional applications of dynamic signatures are studied in detail. The well‐known “new better than used” (NBU) property of aging systems is extended to a uniform (UNBU) version, which compares systems when new and when used, conditional on the known number of failures. Sufficient conditions are given for a system to have the UNBU property. The application of dynamic signatures to the engineering practice of “burn‐in” is also treated. Specifically, we consider the comparison of new systems with working used systems burned‐in to a given ordered component failure time. In a reliability economics framework, we illustrate how one might compare a new system to one successfully burned‐in to the kth component failure, and we identify circumstances in which burn‐in is inferior (or is superior) to the fielding of a new system. © 2009 Wiley Periodicals, Inc. Naval Research Logistics, 2009  相似文献   

8.
Burn‐in is a widely used method to improve the quality of products or systems after they have been produced. In this paper, we consider the problem of determining bounds to the optimal burn‐in time and optimal replacement policy maximizing the steady state availability of a repairable system. It is assumed that two types of system failures may occur: One is Type I failure (minor failure), which can be removed by a minimal repair, and the other is Type II failure (catastrophic failure), which can be removed only by a complete repair. Assuming that the underlying lifetime distribution of the system has a bathtub‐shaped failure rate function, upper and lower bounds for the optimal burn‐in time are provided. Furthermore, some other applications of optimal burn‐in are also considered. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004  相似文献   

9.
This article studies coherent systems of heterogenous and statistically dependent components' lifetimes. We present a sufficient and necessary condition for a stochastically longer system lifetime resulted by allocating a single active redundancy. For exchangeable components' lifetimes, allocating the redundancy to the component with more minimal path sets is proved to produce a more reliable system, and for systems with stochastic arrangement increasing components' lifetimes and symmetric structure with respect to two components, allocating the redundancy to the weaker one brings forth a larger reliability. Several numerical examples are presented to illustrate the theoretical results as well. © 2016 Wiley Periodicals, Inc. Naval Research Logistics 63: 335–345, 2016  相似文献   

10.
We investigate the joint signature of m coherent systems, under the assumption that the components have independent and identically distributed lifetimes. The joint signature, for a particular ordering of failure times, is an m ‐dimensional matrix depending solely on the composition of the systems and independent of the underlying distribution function of the component lifetimes. The elements of the m ‐dimensional matrix are formulated based on the joint signatures of numerous series of parallel systems. The number of the joint signatures involved is an exponential function of the number of the minimal cut sets of each original system and may, therefore, be significantly large. We prove that although this number is typically large, a great number of the joint signatures are repeated, or removed by negative signs. We determine the maximum number of different joint signatures based on the number of systems and components. It is independent of the number of the minimal cut sets of each system and is polynomial in the number of components. Moreover, we consider all permutations of failure times and demonstrate that the results for one permutation can be of use for the others. Our theorems are applied to various examples. The main conclusion is that the joint signature can be computed much faster than expected.  相似文献   

11.
Reliability Economics is a field that can be defined as the collection of all problems in which there is tension between the performance of systems of interest and their cost. Given such a problem, the aim is to resolve the tension through an optimization process that identifies the system which maximizes some appropriate criterion function (e.g. expected lifetime per unit cost). In this paper, we focus on coherent systems of n independent and identically distributed (iid) components and mixtures thereof, and characterize both a system's performance and cost as functions of the system's signature vector (Samaniego, IEEE Trans Reliabil (1985) 69–72). For a given family of criterion functions, a variety of optimality results are obtained for systems of arbitrary order n. Approximations are developed and justified when the underlying component distribution is unknown. Assuming the availability of an auxiliary sample of N component failure times, the asymptotic theory of L‐estimators is adapted for the purpose of establishing the consistency and asymptotic normality of the proposed estimators of the expected ordered failure times of the n components of the systems under study. These results lead to the identification of ε‐optimal systems relative to the chosen criterion function. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   

12.
In system reliability analysis, for an n ‐component system, the estimation of the performance of the components in the system is not straightforward in practice, especially when the components are dependent. Here, by assuming the n components in the system to be identically distributed with a common distribution belonging to a scale‐family and the dependence structure between the components being known, we discuss the estimation of the lifetime distributions of the components in the system based on the lifetimes of systems with the same structure. We develop a general framework for inference on the scale parameter of the component lifetime distribution. Specifically, the method of moments estimator (MME) and the maximum likelihood estimator (MLE) are derived for the scale parameter, and the conditions for the existence of the MLE are also discussed. The asymptotic confidence intervals for the scale parameter are also developed based on the MME and the MLE. General simulation procedures for the system lifetime under this model are described. Finally, some examples of two‐ and three‐component systems are presented to illustrate all the inferential procedures developed here. © 2012 Wiley Periodicals, Inc. Naval Research Logistics, 2012  相似文献   

13.
We give necessary and sufficient conditions based on signatures to obtain distribution‐free stochastic ordering properties for coherent systems with exchangeable components. Specifically, we consider the stochastic, the hazard (failure) rate, the reversed hazard rate, and the likelihood ratio orders. We apply these results to obtain stochastic ordering properties for all the coherent systems with five or less exchangeable components. Our results extend some preceding results. © 2011 Wiley Periodicals, Inc. Naval Research Logistics, 2011  相似文献   

14.
15.
A 2‐dimensional rectangular k‐within‐consecutive‐(r, s)‐out‐of‐(m, n):F system consists of m × n components, and fails if and only if k or more components fail in an r × s submatrix. This system can be treated as a reliability model for TFT liquid crystal displays, wireless communication networks, etc. Although an effective method has been developed for evaluating the exact system reliability of small or medium‐sized systems, that method needs extremely high computing time and memory capacity when applied to larger systems. Therefore, developing upper and lower bounds and accurate approximations for system reliability is useful for large systems. In this paper, first, we propose new upper and lower bounds for the reliability of a 2‐dimensional rectangular k‐within‐consecutive‐(r, s)‐out‐of‐(m, n):F system. Secondly, we propose two limit theorems for that system. With these theorems we can obtain accurate approximations for system reliabilities when the system is large and component reliabilities are close to one. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005  相似文献   

16.
This study addresses the allocation of matched active redundancy components to coherent systems with base components having statistically dependent lifetimes. We consider base component lifetimes and redundancy component lifetimes which are both stochastic arrangement monotone with respect to a pair of components given the lifetimes of the other components. In this context, allocating a more reliable redundancy component to the weaker base component is shown to incur a stochastically larger system lifetime. Numerical examples are presented as an illustration of the theoretical results.  相似文献   

17.
A new connection between the distribution of component failure times of a coherent system and (adaptive) progressively Type‐II censored order statistics is established. Utilizing this property, we develop inferential procedures when the data is given by all component failures until system failure in two scenarios: In the case of complete information, we assume that the failed component is also observed whereas in the case of incomplete information, we have only information about the failure times but not about the components which have failed. In the first setting, we show that inferential methods for adaptive progressively Type‐II censored data can directly be applied to the problem. For incomplete information, we face the problem that the corresponding censoring plan is not observed and that the available inferential procedures depend on the knowledge of the used censoring plan. To get estimates for distributional parameters, we propose maximum likelihood estimators which can be obtained by solving the likelihood equations directly or via an Expectation‐Maximization‐algorithm type procedure. For an exponential distribution, we discuss also a linear estimator to estimate the mean. Moreover, we establish exact distributions for some estimators in the exponential case which can be used, for example, to construct exact confidence intervals. The results are illustrated by a five component bridge system. © 2015 Wiley Periodicals, Inc. Naval Research Logistics 62: 512–530, 2015  相似文献   

18.
Most of the research, on the study of the reliability properties of technical systems, assume that the components of the system operate independently. However, in real life situation, it is more reasonable to assume that there is dependency among the components of the system. In this article, we give sufficient conditions based on the signature and the joint distribution of component lifetimes to obtain stochastic ordering results for coherent and mixed systems with exchangeable components. Some stochastic orders on dynamic (or conditional) signature of coherent systems are also provided. © 2014 Wiley Periodicals, Inc. Naval Research Logistics 61: 549–556, 2014  相似文献   

19.
A computationally simple method for obtaining confidence bounds for highly reliable coherent systems, based on component tests which experience few or no failures, is given. Binomial and Type I censored exponential failure data are considered. Here unknown component unreliabilities are ordered by weighting factors, which are firstly presumed known then sensitivity of the confidence bounds to these assumed weights is examined and shown to be low.  相似文献   

20.
Populations of many types of component are heterogeneous and often consist of a small number of different subpopulations. This is called a mixture and it arises in a number of situations. For example, a majority of products in industrial populations are mixtures of defective items with shorter lifetimes and standard items with longer lifetimes. It is a well‐known result that distributions with decreasing failure rates are closed under mixture. However, mixtures of distributions with increasing failure rates are not easily classifiable. If the subpopulations involved in the mixture have increasing failure rates, there might be some upward movement in the mixture and later a general downward pull towards the strongest component. Little work has been done in describing the shape of mixture failure rates when all subpopulations do not have decreasing failure rate. In this paper, we present general results that describe the shape and behavior of a failure rate of a mixture obtained from two Weibull subpopulations with strictly increasing failure rates. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号