首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 45 毫秒
1.
Consider a system consisting of n separately maintained independent components where the components alternate between intervals in which they are “up” and in which they are “down”. When the ith component goes up [down] then, independent of the past, it remains up [down] for a random length of time, having distribution Fi[Gi], and then goes down [up]. We say that component i is failed at time t if it has been “down” at all time points s ?[t-A.t]: otherwise it is said to be working. Thus, a component is failed if it is down and has been down for the previous A time units. Assuming that all components initially start “up,” let T denote the first time they are all failed, at which point we say the system is failed. We obtain the moment-generating function of T when n = l, for general F and G, thus generalizing previous results which assumed that at least one of these distributions be exponential. In addition, we present a condition under which T is an NBU (new better than used) random variable. Finally we assume that all the up and down distributions Fi and Gi i = l,….n, are exponential, and we obtain an exact expression for E(T) for general n; in addition we obtain bounds for all higher moments of T by showing that T is NBU.  相似文献   

2.
Consider an auction in which increasing bids are made in sequence on an object whose value θ is known to each bidder. Suppose n bids are received, and the distribution of each bid is conditionally uniform. More specifically, suppose the first bid X1 is uniformly distributed on [0, θ], and the ith bid is uniformly distributed on [Xi?1, θ] for i = 2, …?, n. A scenario in which this auction model is appropriate is described. We assume that the value θ is un known to the statistician and must be esimated from the sample X1, X2, …?, Xn. The best linear unbiased estimate of θ is derived. The invariance of the estimation problem under scale transformations in noted, and the best invariant estimation problem under scale transformations is noted, and the best invariant estimate of θ under loss L(θ, a) = [(a/θ) ? 1]2 is derived. It is shown that this best invariant estimate has uniformly smaller mean-squared error than the best linear unbiased estimate, and the ratio of the mean-squared errors is estimated from simulation experiments. A Bayesian formulation of the estimation problem is also considered, and a class of Bayes estimates is explicitly derived.  相似文献   

3.
Suppose X1,X2, ?,Xn is a random sample of size n from a continuous distribution function F(x) and let X1,n, ≦ X2,n ≦ ? ≦ Xn,n be the corresponding order statistics. We define the jth-order gap gi,j as gi,j = Xi+j,n ? Xi,n, 1 ≦ i < n, 1 ≦ jn ? i. In this article characterizations of the exponential distribution are given by considering the distributional properties of gk,n-k, 1 ≦ kn.  相似文献   

4.
Suppose that observations from populations π1, …, πk (k ≥ 1) are normally distributed with unknown means μ1., μk, respectively, and a common known variance σ2. Let μ[1] μ … ≤ μ[k] denote the ranked means. We take n independent observations from each population, denote the sample mean of the n observation from π1 by X i (i = 1, …, k), and define the ranked sample means X [1] ≤ … ≤ X [k]. The problem of confidence interval estimation of μ(1), …,μ[k] is stated and related to previous work (Section 1). The following results are obtained (Section 2). For i = 1, …, k and any γ(0 < γ < 1) an upper confidence interval for μ[i] with minimal probability of coverage γ is (? ∞, X [i]+ h) with h = (σ/n1/2) Φ?11/k-i+1), where Φ(·) is the standard normal cdf. A lower confidence interval for μ[i] with minimal probability of coverage γ is (X i[i]g, + ∞) with g = (σ/n1/2) Φ?11/i). For the upper confidence interval on μ[i] the maximal probability of coverage is 1– [1 – γ1/k-i+1]i, while for the lower confidence interval on μ[i] the maximal probability of coverage is 1–[1– γ1/i] k-i+1. Thus the maximal overprotection can always be calculated. The overprotection is tabled for k = 2, 3. These results extend to certain translation parameter families. It is proven that, under a bounded completeness condition, a monotone upper confidence interval h(X 1, …, X k) for μ[i] with probability of coverage γ(0 < γ < 1) for all μ = (μ[1], …,μ[k]), does not exist.  相似文献   

5.
Decomposition algorithms for finding a shortest path between a source node and a sink node of an arbitrary distance network are developed. Different decomposition algorithms are proposed for different network topologies. Since Shier's algorithm compares very favorably with other decomposition algorithms in all the network topologies, we compare our algorithms against Shier's algorithm. It is shown that the efficiency of the proposed algorithms compares very favorably with Shier's algorithm. For special types of networks the computational requirements of the proposed algorithm is a polynomial of O(n2).  相似文献   

6.
Consider a set of vertices V = {1, 2,…, n} placed on a two-dimensional Euclidean plane R2 with each vertex attached a nonnegative weight w: VR. For a given constant d>0, the geometric graph G = (V, E) is defined to have edge set E = {(i, j): dijd} with dij being the Euclidean distance between vertices i and j. The geometric vertex packing (GVP) problem, which is often called the independent set problem, is defined as selecting the set of pairwise nonadjacent vertices with maximum total weight. We limit our attention to the special case that no vertex is within a distance βd of any other vertices where 0 ⩽ β < 1. A special value of β (= 1/2) is referred to frequently because of its correspondence to a manufacturing problem in circuit board testing. In this article we show that the weighted vertex packing problem for the specially structured geometric graph (SGVP) defined with the above restriction is NP-complete even for the case that all vertex weights are unity and for any β. Polynomial procedures have been designed for generating cuts to obtain tight LP upper bounds for the SGVP. Two heuristics with bounded worst-case performance are applied to the LP solution to produce a feasible solution and a lower bound. We then use a branch-and-bound procedure to solve the problem to optimality. Computational results on large-scale SGVP problems will be discussed. © 1995 John Wiley & Sons, Inc.  相似文献   

7.
Let {Xi} be independent HNBUE (Harmonic New Better Than Used in Expectation) random variables and let {Yi} be independent exponential random variables such that E{Xi}=E{Yi} It is shown that \documentclass{article}\pagestyle{empty}\begin{document}$ E\left[{u\left({\mathop {\min \,X_i}\limits_{l \le i \le n}} \right)} \right] \ge E\left[{u\left({\mathop {\min \,Y_i}\limits_{l \le i \le n}} \right)} \right] $\end{document} for all increasing and concave u. This generalizes a result of Kubat. When comparing two series systems with components of equal cost, one with lifetimes {Xi} and the other with lifetimes {Yi}, it is shown that a risk-averse decision-maker will prefer the HNBUE system. Similar results are obtained for parallel systems.  相似文献   

8.
We consider a two‐phase service queueing system with batch Poisson arrivals and server vacations denoted by MX/G1G2/1. The first phase service is an exhaustive or a gated bulk service, and the second phase is given individually to the members of a batch. By a reduction to an MX/G/1 vacation system and applying the level‐crossing method to a workload process with two types of vacations, we obtain the Laplace–Stieltjes transform of the sojourn time distribution in the MX/G1G2/1 with single or multiple vacations. The decomposition expression is derived for the Laplace–Stieltjes transform of the sojourn time distribution, and the first two moments of the sojourn time are provided. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   

9.
This paper develops a methodology for optimizing operation of a multipurpose reservoir with a finite capacity V. The input of water into the reservoir is a Wiener process with positive drift. There are n purposes for which water is demanded. Water may be released from the reservoir at any rate, and the release rate can be increased or decreased instantaneously with zero cost. In addition to the reservoir, a supplementary source of water can supply an unlimited amount of water demanded during any period of time. There is a cost of Ci dollars per unit of demand supplied by the supplementary source to the ith purpose (i = 1, 2, …, n). At any time, the demand rate Ri associated with the ith purpose (i = 1, 2, …, n) must be supplied. A controller must continually decide the amount of water to be supplied by the reservoir for each purpose, while the remaining demand will be supplied through the supplementary source with the appropriate costs. We consider the problem of specifying an output policy which minimizes the long run average cost per unit time.  相似文献   

10.
Let X1 < X2 <… < Xn denote an ordered sample of size n from a Weibull population with cdf F(x) = 1 - exp (?xp), x > 0. Formulae for computing Cov (Xi, Xj) are well known, but they are difficult to use in practice. A simple approximation to Cov(Xi, Xj) is presented here, and its accuracy is discussed.  相似文献   

11.
For each n, X1(n),…, Xn(n) are independent and identically distributed random variables, each with cumulative distribution function F(x) which is known to be absolutely continuous but is otherwise unknown. The problem is to test the hypothesis that \documentclass{article}\pagestyle{empty}\begin{document}$ F(x) = G\left( {{\textstyle{{x - \theta _1 } \over {\theta _2 }}}} \right) $\end{document}, where the cumulative distribution function Gx is completely specified and satisfies certain regularity conditions, and the parameters θ1, θ2 are unknown and unspecified, except that the scale parameter θ2, is positive. Y1 (n) ≦ Y2 (n) ≦ … ≦ Yn (n)are the ordered values of X1(n),…, Xn(n). A test based on a certain subset of {Yi(n)} is proposed, is shown to have asymptotically a normal distribution when the hypothesis is true, and is shown to be consistent against all alternatives satisfying a mild regularity condition.  相似文献   

12.
We present a branch and bound algorithm to solve mathematical programming problems of the form: Find x =|(x1,…xn) to minimize Σ?i0(x1) subject to x?G, l≦x≦L and Σ?i0(x1)≦0, j=1,…,m. With l=(l1,…,ln) and L=(L1,…,Ln), each ?ij is assumed to be lower aemicontinuous and piecewise convex on the finite interval [li.Li]. G is assumed to be a closed convex set. The algorithm solves a finite sequence of convex programming problems; these correspond to successive partitions of the set C={x|l ≦ x ≦L} on the bahis of the piecewise convexity of the problem functions ?ij. Computational considerations are discussed, and an illustrative example is presented.  相似文献   

13.
Consider a two machine flow shop and n jobs. The processing time of job j on machine i is equal to the random variable Xij One of the two machines is subject to breakdown and repair. The objective is to find the schedule that minimizes the expected makespan. Two results are shown. First, ifP(X2j ≧ X1j) = 1 for all j and the random variables X11, X12,…, X1n are likelihood ratio ordered, then the SEPT sequence minimizes the expected makespan when machine 2 is subject to an arbitrary breakdown process; if P(X1j≧X2j) = 1 and X21, X22,….,X2n are likelihood ratio ordered, then the LEPT sequence minimizes the expected makespan when machine 1 is subject to an arbitrary breakdown process. A generalization is presented for flow shops with m machines. Second, consider the case where X1j and X2j are i.i.d. exponentially distributed with rate λj. The SEPT sequence minimizes the expected makespan when machine 2 is subject to an arbitrary breakdown process and the LEPT sequence is optimal when machine 1 is subject to an arbitrary breakdown process. © 1995 John Wiley & Sons, Inc.  相似文献   

14.
Consider a k-out-of-n system with independent repairable components. Assume that the repair and failure distributions are exponential with parameters {μ1, ?,μn} and {λ1, ?,λn}, respectively. In this article we show that if λi – μi = Δ for all i then the life distribution of the system is increasing failure rate (IFR).  相似文献   

15.
A classic problem in Search Theory is one in which a searcher allocates resources to the points of the integer interval [1, n] in an attempt to find an object which has been hidden in them using a known probability function. In this paper we consider a modification of this problem in which there is a protector who can also allocate resources to the points; allocating these resources makes it more difficult for the searcher to find an object. We model the situation as a two‐person non‐zero‐sum game so that we can take into account the fact that using resources can be costly. It is shown that this game has a unique Nash equilibrium when the searcher's probability of finding an object located at point i is of the form (1 − exp (−λixi)) exp (−μiyi) when the searcher and protector allocate resources xi and yi respectively to point i. An algorithm to find this Nash equilibrium is given. © 2000 John Wiley & Sons, Inc. Naval Research Logistics 47:85–96, 2000  相似文献   

16.
Let Xi be independent IFR random variables and let Yi be independent exponential random variables such that E[Xi]=E[Yi] for all i=1, 2, ? n. Then it is well known that E[min (Xi)] ≥E[min (Xi)]. Nevertheless, for 1≤i≤n exponentially distributed Xi's and for a decreasing convex function ?(.). it is shown that .  相似文献   

17.
There are given k (? 2) univariate cumulative distribution functions (c.d.f.'s) G(x; θi) indexed by a real-valued parameter θi, i=1,…, k. Assume that G(x; θi) is stochastically increasing in θi. In this paper interval estimation on the ith smallest of the θ's and related topics are studied. Applications are considered for location parameter, normal variance, binomial parameter, and Poisson parameter.  相似文献   

18.
This paper deals with a two searchers game and it investigates the problem of how the possibility of finding a hidden object simultaneously by players influences their behavior. Namely, we consider the following two‐sided allocation non‐zero‐sum game on an integer interval [1,n]. Two teams (Player 1 and 2) want to find an immobile object (say, a treasure) hidden at one of n points. Each point i ∈ [1,n] is characterized by a detection parameter λi (μi) for Player 1 (Player 2) such that pi(1 ? exp(?λixi)) (pi(1 ? exp(?μiyi))) is the probability that Player 1 (Player 2) discovers the hidden object with amount of search effort xi (yi) applied at point i where pi ∈ (0,1) is the probability that the object is hidden at point i. Player 1 (Player 2) undertakes the search by allocating the total amount of effort X(Y). The payoff for Player 1 (Player 2) is 1 if he detects the object but his opponent does not. If both players detect the object they can share it proportionally and even can pay some share to an umpire who takes care that the players do not cheat each other, namely Player 1 gets q1 and Player 2 gets q2 where q1 + q2 ≤ 1. The Nash equilibrium of this game is found and numerical examples are given. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   

19.
It is often assumed in the facility location literature that functions of the type øi(xi, y) = βi[(xi-x)2+(yi-y)2]K/2 are twice differentiable. Here we point out that this is true only for certain values of K. Convexity proofs that are independent of the value of K are given.  相似文献   

20.
To location Li we are to allocate a “generator” and ni “machines” for i = 1, …,k, where n1n1 ≧ … ≧ nk. Although the generators and machines function independently of one another, a machine is operable only if it and the generator at its location are functioning. The problem we consider is that of finding the arrangement or allocation optimizing the number of operable machines. We show that if the objective is to maximize the expected number of operable machines at some future time, then it is best to allocate the best generator and the n1 best machines to location L1, the second-best generator and the n2-next-best machines to location L2, etc. However, this arrangement is not always stochastically optimal. For the case of two generators we give a necessary and sufficient condition that this arrangement is stochastically best, and illustrate the result with several examples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号