首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
This paper is concerned with estimating p = P(X1 < Y …, Xn < Y) or q =P (X < Y1, …, X < Yn) where the X's and Y's are all independent random variables. Applications to estimation of the reliability p from stress-strength relationships are considered where a component is subject to several stresses X1, X2, …, XN whereas its strength, Y, is a single random variable. Similarly, the reliability q is of interest where a component is made of several parts all with their individual strengths Y1, Y2 …, YN and a single stress X is applied to the component. When the X's and Y's are independent and normal, maximum likelihood estimates of p and q have been obtained. For the case N = 2 and in some special cases, minimum variance unbiased estimates have been given. When the Y's are all exponential and the X is normal with known variance, but unknown mean (or uniform between 0 and θ, θ being unknown) the minimum variance unbiased estimate of q is established in this paper.  相似文献   

2.
For each n, X1(n),…, Xn(n) are independent and identically distributed random variables, each with cumulative distribution function F(x) which is known to be absolutely continuous but is otherwise unknown. The problem is to test the hypothesis that \documentclass{article}\pagestyle{empty}\begin{document}$ F(x) = G\left( {{\textstyle{{x - \theta _1 } \over {\theta _2 }}}} \right) $\end{document}, where the cumulative distribution function Gx is completely specified and satisfies certain regularity conditions, and the parameters θ1, θ2 are unknown and unspecified, except that the scale parameter θ2, is positive. Y1 (n) ≦ Y2 (n) ≦ … ≦ Yn (n)are the ordered values of X1(n),…, Xn(n). A test based on a certain subset of {Yi(n)} is proposed, is shown to have asymptotically a normal distribution when the hypothesis is true, and is shown to be consistent against all alternatives satisfying a mild regularity condition.  相似文献   

3.
Let Xt, t = 1,2, ?, be a stationary Gaussian Markov process with E(Xt) = μ and Cov(Xt, Xt+k) = σ2ρk. We derive a prediction interval for X2n+1 based on the preceding 2n observations X1,X2, ?,X2n.  相似文献   

4.
There are given k (? 2) univariate cumulative distribution functions (c.d.f.'s) G(x; θi) indexed by a real-valued parameter θi, i=1,…, k. Assume that G(x; θi) is stochastically increasing in θi. In this paper interval estimation on the ith smallest of the θ's and related topics are studied. Applications are considered for location parameter, normal variance, binomial parameter, and Poisson parameter.  相似文献   

5.
Let X1 < X2 <… < Xn denote an ordered sample of size n from a Weibull population with cdf F(x) = 1 - exp (?xp), x > 0. Formulae for computing Cov (Xi, Xj) are well known, but they are difficult to use in practice. A simple approximation to Cov(Xi, Xj) is presented here, and its accuracy is discussed.  相似文献   

6.
For each n, X1(n),…Xn(n) are independent and identically distributed random variables, with common probability density function Where c, θ, α, and r(y) are all unknown. It is shown that we can make asymptotic inferences about c, θ, and α, when r(y) satisfies mild conditions.  相似文献   

7.
Suppose that observations from populations π1, …, πk (k ≥ 1) are normally distributed with unknown means μ1., μk, respectively, and a common known variance σ2. Let μ[1] μ … ≤ μ[k] denote the ranked means. We take n independent observations from each population, denote the sample mean of the n observation from π1 by X i (i = 1, …, k), and define the ranked sample means X [1] ≤ … ≤ X [k]. The problem of confidence interval estimation of μ(1), …,μ[k] is stated and related to previous work (Section 1). The following results are obtained (Section 2). For i = 1, …, k and any γ(0 < γ < 1) an upper confidence interval for μ[i] with minimal probability of coverage γ is (? ∞, X [i]+ h) with h = (σ/n1/2) Φ?11/k-i+1), where Φ(·) is the standard normal cdf. A lower confidence interval for μ[i] with minimal probability of coverage γ is (X i[i]g, + ∞) with g = (σ/n1/2) Φ?11/i). For the upper confidence interval on μ[i] the maximal probability of coverage is 1– [1 – γ1/k-i+1]i, while for the lower confidence interval on μ[i] the maximal probability of coverage is 1–[1– γ1/i] k-i+1. Thus the maximal overprotection can always be calculated. The overprotection is tabled for k = 2, 3. These results extend to certain translation parameter families. It is proven that, under a bounded completeness condition, a monotone upper confidence interval h(X 1, …, X k) for μ[i] with probability of coverage γ(0 < γ < 1) for all μ = (μ[1], …,μ[k]), does not exist.  相似文献   

8.
A common problem in life testing is to demonstrate that the mean time to failure, θ, exceeds some minimum acceptable value, say θ1, with a given confidence coefficient γ. When this is true, it is said that “θ1 has been demonstrated with a confidence γ”. In this paper a Sequential Bayes Procedure (SBP) for demonstrating (by means of. a probability statement) that θ exceeds θ1 is presented. The SBP differs from the classical procedure in the sense that a prior distribution is assumed on the parameter θ, calling for a Bayesian approach. The procedure is based on the sequence of statistics.  相似文献   

9.
Suppose X1,X2, ?,Xn is a random sample of size n from a continuous distribution function F(x) and let X1,n, ≦ X2,n ≦ ? ≦ Xn,n be the corresponding order statistics. We define the jth-order gap gi,j as gi,j = Xi+j,n ? Xi,n, 1 ≦ i < n, 1 ≦ jn ? i. In this article characterizations of the exponential distribution are given by considering the distributional properties of gk,n-k, 1 ≦ kn.  相似文献   

10.
For each n., X1(n), X2(n), …, Xn(n) are IID, with common pdf fn(x). y1(n) < … < Yn (n) are the ordered values of X1 (n), …, Xn(n). Kn is a positive integer, with lim Kn = ∞. Under certain conditions on Kn and fn (x), it was shown in an earlier paper that the joint distribution of a special set of Kn + 1 of the variables Y1 (n), …, Yn (n) can be assumed to be normal for all asymptotic probability calculations. In another paper, it was shown that if fn (x) approaches the pdf which is uniform over (0, 1) at a certain rate as n increases, then the conditional distribution of the order statistics not in the special set can be assumed to be uniform for all asymptotic probability calculations. The present paper shows that even if fn (x) does not approach the uniform distribution as n increases, the distribution of the order statistics contained between order statistics in the special set can be assumed to be the distribution of a quadratic function of uniform random variables, for all asymptotic probability calculations. Applications to statistical inference are given.  相似文献   

11.
To location Li we are to allocate a “generator” and ni “machines” for i = 1, …,k, where n1n1 ≧ … ≧ nk. Although the generators and machines function independently of one another, a machine is operable only if it and the generator at its location are functioning. The problem we consider is that of finding the arrangement or allocation optimizing the number of operable machines. We show that if the objective is to maximize the expected number of operable machines at some future time, then it is best to allocate the best generator and the n1 best machines to location L1, the second-best generator and the n2-next-best machines to location L2, etc. However, this arrangement is not always stochastically optimal. For the case of two generators we give a necessary and sufficient condition that this arrangement is stochastically best, and illustrate the result with several examples.  相似文献   

12.
The discounted return associated with a finite state Markov chain X1, X2… is given by g(X1)+ αg(X2) + α2g(X3) + …, where g(x) represents the immediate return from state x. Knowing the transition matrix of the chain, it is desired to compute the expected discounted return (present worth) given the initial state. This type of problem arises in inventory theory, dynamic programming, and elsewhere. Usually the solution is approximated by solving the system of linear equations characterizing the expected return. These equations can be solved by a variety of well-known methods. This paper describes yet another method, which is a slight modification of the classical iterative scheme. The method gives sequences of upper and lower bounds which converge mono-tonely to the solution. Hence, the method is relatively free of error control problems. Computational experiments were conducted which suggest that for problems with a large number of states, the method is quite efficient. The amount of computation required to obtain the solution increases much slower with an increase in the number of states, N, than with the conventional methods. In fact, computational time is more nearly proportional to N2, than to N3.  相似文献   

13.
Consider an experiment in which only record-breaking values (e.g., values smaller than all previous ones) are observed. The data available may be represented as X1,K1,X2,K2, …, where X1,X2, … are successive minima and K1,K2, … are the numbers of trials needed to obtain new records. We treat the problem of estimating the mean of an underlying exponential distribution, and we consider both fixed sample size problems and inverse sampling schemes. Under inverse sampling, we demonstrate certain global optimality properties of an estimator based on the “total time on test” statistic. Under random sampling, it is shown than an analogous estimator is consistent, but can be improved for any fixed sample size.  相似文献   

14.
Let (Y, Xl,…, XK) be a random vector distributed according to a multivariate normal distribution where Xl,…, XK are considered as predictor variables and y is the predictand. Let ri, and Ri denote the population and sample correlation coefficients, respectively, between Y and Xi. The population correlation coefficient ri is a measure of the predictive power of Xi. The author has derived the joint distribution of Rl,…, RK and its asymptotic property. The given result is useful in the problem of selecting the most important predictor variable corresponding to the largest absolute value of ri.  相似文献   

15.
In this article we study the estimation of the average excess life θ in a two-parameter exponential distribution with a known linear relationship between α (the minimum life) and θ of the form α = aθ, where a is known and positive. A comparison of the efficiencies of estimators which are linear combinations of the smallest sample value and the sample sum of deviations from the smallest sample value and the maximum likelihood estimators is made for various sample sizes and different values of a. It is shown that these estimators are dominated in the risk by the minimum-risk scale equivariant estimator based on sufficient statistics. A class of Bayes estimators for inverted gamma priors is constructed and shown to include a minimum-risk scale equivariant estimator in it. All the members of this class can be computed easily.  相似文献   

16.
Consider a k-out-of-n system with independent repairable components. Assume that the repair and failure distributions are exponential with parameters {μ1, ?,μn} and {λ1, ?,λn}, respectively. In this article we show that if λi – μi = Δ for all i then the life distribution of the system is increasing failure rate (IFR).  相似文献   

17.
This paper develops a methodology for optimizing operation of a multipurpose reservoir with a finite capacity V. The input of water into the reservoir is a Wiener process with positive drift. There are n purposes for which water is demanded. Water may be released from the reservoir at any rate, and the release rate can be increased or decreased instantaneously with zero cost. In addition to the reservoir, a supplementary source of water can supply an unlimited amount of water demanded during any period of time. There is a cost of Ci dollars per unit of demand supplied by the supplementary source to the ith purpose (i = 1, 2, …, n). At any time, the demand rate Ri associated with the ith purpose (i = 1, 2, …, n) must be supplied. A controller must continually decide the amount of water to be supplied by the reservoir for each purpose, while the remaining demand will be supplied through the supplementary source with the appropriate costs. We consider the problem of specifying an output policy which minimizes the long run average cost per unit time.  相似文献   

18.
A statistic is determined for testing the hypothesis of equality for scale parameters from two populations, each of which has the first asymptotic distribution of smallest (extreme) values. The probability distribution is derived for this statistic, and critical values are determined and given in tabular form for a one-sided or two-sided alternative, for censored samples of size n1 and n2, n1 = 2, 3, …. 6, n2 = 2, 3, …. 6. The power function of the test for certain alternatives is also calculated and listed in each case considered.  相似文献   

19.
We present a branch and bound algorithm to solve mathematical programming problems of the form: Find x =|(x1,…xn) to minimize Σ?i0(x1) subject to x?G, l≦x≦L and Σ?i0(x1)≦0, j=1,…,m. With l=(l1,…,ln) and L=(L1,…,Ln), each ?ij is assumed to be lower aemicontinuous and piecewise convex on the finite interval [li.Li]. G is assumed to be a closed convex set. The algorithm solves a finite sequence of convex programming problems; these correspond to successive partitions of the set C={x|l ≦ x ≦L} on the bahis of the piecewise convexity of the problem functions ?ij. Computational considerations are discussed, and an illustrative example is presented.  相似文献   

20.
This study is concerned with a game model involving repeated play of a matrix game with unknown entries; it is a two-person, zero-sum, infinite game of perfect recall. The entries of the matrix ((pij)) are selected according to a joint probability distribution known by both players and this unknown matrix is played repeatedly. If the pure strategy pair (i, j) is employed on day k, k = 1, 2, …, the maximizing player receives a discounted income of βk - 1 Xij, where β is a constant, 0 ≤ β ? 1, and Xij assumes the value one with probability pij or the value zero with probability 1 - pij. After each trial, the players are informed of the triple (i, j, Xij) and retain this knowledge. The payoff to the maximizing player is the expected total discounted income. It is shown that a solution exists, the value being characterized as the unique solution of a functional equation and optimal strategies consisting of locally optimal play in an auxiliary matrix determined by the past history. A definition of an ?-learning strategy pair is formulated and a theorem obtained exhibiting ?-optimal strategies which are ?-learning. The asymptotic behavior of the value is obtained as the discount tends to one.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号