首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
在有机涂层中加入缓蚀剂构成耐蚀涂层,可以进一步提高原涂层的耐蚀能力。本文研究了一种缓蚀剂HN(由H和N复配而成,H为杂环类,N为胺类),用在普通涂层—铁红环氧酯中试验。采用了四种方法:电化学交流阻抗法,盐雾箱试验法,人造海水浸泡,海上实船挂片,并分别与未加缓蚀剂的原涂层进行对比,对各涂层的耐蚀性能进行评定。结果表明:在铁红环氧酯中加入少量HN缓蚀剂后,在不改变原涂层附着力的情况下,明显提高了原涂层的耐蚀能力。  相似文献   

2.
在普通涂料中加入缓蚀剂构成缓蚀涂料,可以大大增强涂料的防蚀能力。本工作针对舰船船底漆铝扮沥青环氧涂层,研究了二种含有氨基、羧基及杂环的有机缓蚀剂,当在普通的船底漆中加入少量缓蚀剂后,不改变原来涂层的物理机械性能,但可显著地提高涂层的耐蚀性能,采用了浸泡试验、盐雾箱试验及交流阻抗测试对涂层的耐蚀性能进行了评价,并采用电化学方法对涂层缓蚀剂的机理作了探讨。  相似文献   

3.
为改善镁合金表面耐蚀性能,设计并制备了3种高熵合金喷涂粉末,采用冷喷涂技术制备涂层.利用X射线衍射仪(XRD)、扫描电镜(SEM)、显微硬度计等研究了涂层组织和力学性能.用电化学方法分析评价了涂层在质量分数为3.5% NaC1溶液中的耐蚀性能.结果表明:涂层由BCC简单结构固溶体组成,晶粒范围在12 ~37 nm之间;涂层孔隙率小于1%,表明冷喷涂涂层更为致密,且结合强度达58 MPa,涂层与基体以机械结合为主;涂层极化曲线均山现钝化现象,自腐蚀电位较基体正移,自腐蚀电流密度显著减小;循环极化曲线表明涂层无孔蚀倾向,交流阻抗谱与极化曲线结果相符合.高熵合金涂层可显著改善镁合金表面耐蚀性能.  相似文献   

4.
用动电位扫描法研究了钛材在含有不同氯离子浓度溶液中和含有PO3-4离子的氯离子溶液中的电化学行为.利用线性极化法,测得钛在上述介质中的腐蚀速率.实验结果表明,钛在上述介质中具有非常好的耐蚀性能.  相似文献   

5.
研究了几种防锈液对T52(10Ti热)钢在Ph=5.0酸性水溶液中耐蚀性能的影响.用线性极化和交流阻抗法对这些防锈液的耐蚀性能进行了综合评估,试验结果表明:亚硝酸钠类、含氨基和羧基的有机化合物类两种防锈液的耐蚀性能较好;并用动电位扫描法对上述防锈液的作用机理进行了初步探讨,试验表明:上述防锈液主要是抑制电极的阳极过程.  相似文献   

6.
本工作研究了在LY12表面用等离子喷涂氧化锆隔热涂层的热传导性能和抗热震性能及气孔率对这些性能的影响。结果表明,在所选择的最佳工艺参数和厚度下,涂层具有良好的绝热性和抗热震性。  相似文献   

7.
针对沥青面层厚度与最大公称粒径的关系,是影响沥青混合压实性能和耐久性的重要因素,从压实性能和路用性能两方面,对沥青面层厚度与最大粒径的合理比例进行了室内试验研究。研究结果表明,沥青面层结构层厚度与沥青混合料公称最大粒径的比例为3.0时,沥青路面具有较为优良的性能。  相似文献   

8.
《中国军转民》2012,(12):67-67
1、关键技术参数或产品性能 透明装甲材料是目前世界上最轻薄的。如F79级的防弹玻璃厚度是12.7mm,F56级防弹玻璃的防弹玻璃厚度是20.86mm。防100米53弹的玻璃厚度是34mm,防15米53弹或B6级,或NIJ3级防弹玻璃的厚度是36mm。  相似文献   

9.
Zn-Al—Mg-RE高速电弧喷涂工艺过程的氧化行为分析   总被引:1,自引:0,他引:1  
为分析高速电弧喷涂工艺制备Zn-Al-Mg-RE防腐涂层的氧化行为,通过XRD、SEM和EDS试验探究了喷涂工艺对该涂层氧化物的组成、含量及其形态的影响规律,并测试了涂层的中性盐雾腐蚀性能。结果发现:该涂层具有典型的层状结构特征,在相互叠加的扁平颗粒之间有很薄的氧化物膜,同时在扁平颗粒的内部也非均匀地分布着富氧化物区,XRD显示这些氧化物主要为ZnO2和尖晶石结构的ZnAl2O4与MgAl2O4等。分析认为:喷涂时液态金属熔滴在高速气流剪切力作用和反应热梯度作用下,加剧了Zn-Al-Mg-RE熔滴的氧化,这些交错分布的氧化物对合金相产生了较好的屏蔽效果,从而提高了涂层的耐蚀性能。  相似文献   

10.
采用多源磁控溅射物理气相沉积法在单晶硅片、20Cr和Cr12W表面制备了梯度变化非晶碳涂层,测试了非晶碳涂层的纳米硬度和弹性模量及摩擦磨损行为.结果表明涂层具有较高的硬度和弹性模量,分别达到15.3 GPa和184 GPa;涂层具有较好的摩擦性能,在干摩擦条件下摩擦因数基本保持在0.1~0.2,磨损率达到10-9 mm3/( N·m)数量级.  相似文献   

11.
为研究TA2-B10合金管在不同电偶腐蚀防护方式下对B10管腐蚀特性的影响,在青岛小麦岛海水试验场设置TA2-B10管直接连接、电绝缘连接、电绝缘+涂层连接三组不同电偶腐蚀防护方式对照管道,依次进行1m/s、3m/s、4m/s流动海水与浸泡交替腐蚀试验。对试验后的三组B10管道线切割,通过管道内表面电位分布试验分析不同电偶腐蚀防护方式下B10管道的腐蚀类型;采用动电位极化曲线、电化学阻抗谱和微观表征,分析不同电偶腐蚀防护方式下距离法兰接头250mm处B10管试样的腐蚀特性。结果表明,直接连接TA2-B10管处于电偶腐蚀状态,B10端内电位正移腐蚀加速,电绝缘连接和绝缘+涂层连接TA2-B10管均处于自腐蚀状态,但电绝缘+涂层连接具有更好的绝缘效果;电绝缘+涂层连接防护下的B10试样,腐蚀电流密度最小,自腐蚀电位最负;三组B10试样阻抗谱均呈现单容抗弧特征,电绝缘+涂层连接防护下的B10试样具有更大的传递电阻和膜层电阻;电绝缘+涂层连接能有效减缓点蚀、坑蚀和晶间腐蚀三种腐蚀倾向。以上结果综合说明,绝缘+涂层防护方式具有更好的电偶腐蚀防护效果。  相似文献   

12.
电刷镀含纳米粉复合镀层结构和磨损性能   总被引:12,自引:0,他引:12  
用含纳米金刚石粉的镍镀液电刷镀复合镀层,系统试验研究了复合镀层中纳米金刚石对镀层显微结构、力学性能及耐磨性能的影响.结果表明,纳米金刚石的弥散强化作用,可有效改善镀层的生长、减小内应力,提高镀层的显微硬度.含纳米金刚石粉的复合镀层在室温、高负荷下具有优良的抗疲劳和抗磨损性能,其耐磨性是纯镍镀层的4倍.  相似文献   

13.
为了评价陶瓷/金属梯度热障涂层的性能,设计了4种涂层方案和2种基体材料(1Cr18Ni9Ti和2Cr13).利用单枪单送粉器成功地制备了线性梯度涂层.通过观察涂层的微观结构、测量涂层的抗热震性能和热残余应力来评价涂层的性能.利用扫描电镜对各种陶瓷涂层的微观结构进行了观察和分析,利用X射线能谱分析得到了陶瓷梯度涂层试样中的不同区域的衍射图.热震试验表明,梯度涂层比非梯度涂层具有更好的抗热震性能.采用钻孔法对不同涂层方案进行了残余应力的测量,结果表明,压应力出现在1Cr18Ni9Ti基体材料上,而拉应力出现在2Cr13基体材料上.  相似文献   

14.
储氢电极合金的温度特性研究   总被引:5,自引:0,他引:5  
针对目前储氢电极合金不适用于电动汽车用大型电池的情况 ,以Ml (NiCoMnTi) 5 合金为例 ,系统研究了温度对储氢电极合金电化学性能的影响。结果表明 :随着温度升高 ,合金的放电容量降低 ,循环稳定性恶化 ,自放电加剧 ;但是在高温下合金的高倍率放电特性得到显著改善。  相似文献   

15.
采用激光离散预处理钢基体再电镀铬层技术得到了一种新型复合结构,研究了这种新型复合结构在拉伸载荷作用下的开裂行为特征,并与无激光处理钢基体的试样在同样试验条件下的开裂特征进行了对比分析。结果表明:有激光离散预处理钢基体试样的承载能力要高于无激光预处理钢基体试样的承载能力,且有激光处理的试样开裂区域在两个激光带之间(无激光处理区),主裂纹呈现明显的周期性特征。本研究结果可归结为激光预处理钢基体不仅改善了基体表层的应力状态和力学性能,而且还改善了后续铬镀层的力学性能。  相似文献   

16.
为了对潜艇涂层破损状态的水下腐蚀电场进行快速评估,基于电化学腐蚀原理和潜艇结构特点,建立潜艇涂层局部破损时的腐蚀电流等效电路,对潜艇涂层局部破损时的腐蚀电流强度进行估算,并基于点电流源对潜艇腐蚀电场建模,将潜艇涂层破损部位和裸露螺旋桨等效为点电流源,利用点电流源在分层介质中的电场计算公式对潜艇涂层破损时的腐蚀稳恒电场进行估算。与某型潜艇腐蚀电场商业有限元软件COMSOL仿真结果对比表明:该估算方法得到的潜艇表面腐蚀电流和不同路径电场分布曲线规律与COMSOL仿真结果基本一致,电流估算值相对误差不超过6.5%,电场各分量峰峰值相对误差不超过18%。  相似文献   

17.
采用多弧离子镀在304不锈钢基体表面沉积ZrN涂层。利用X射线衍射仪、扫描电子显微镜、纳米压入仪、电化学分析仪等,比较了基片方向对涂层结构、形貌、成分、沉积速率、硬度以及耐腐蚀性的影响。结果表明:基片方向不同会引起晶体择优取向的改变;垂直于靶材的样品表面大颗粒相对较少,但沉积速率只有平行样品的40%-50%;在负偏压条件下,平行于靶材的样品涂层硬度更高,而垂直样品获得更好的耐腐蚀性。  相似文献   

18.
粉末涂料聚酯树脂性能研究   总被引:4,自引:0,他引:4       下载免费PDF全文
在合成粉末涂料聚酯树脂配方中,着重研究了醇、酸对聚酯树脂玻璃化温度的影响,同时将合成产品进行表征,结果表明,合成产品的主要性能指标与国际同类产品相近。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号