首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 40 毫秒
1.
《防务技术》2015,11(4)
High strength aluminium alloy AA7075(Al-Zn-Mg-Cu) is a precipitate hardenable alloy widely used in the aerospace,defense,marine and automobile industries.Use of the heat treatable aluminium alloys in all these sectors is ever-increasing owing to their excellent strength-toweight ratio and reasonably good corrosion resistance.The shortage in corrosion resistance,however,usually poses negative concern about their reliability and lifetime when they service in the variable marine environments.These alloys also exhibit low weldability due to poor solidification microstructure,porosity in fusion zone and lose their mechanical properties when they are welded by fusion welding techniques.Friction stir welding(FSW) is a reliable technique to retain the properties of the alloy as the joining takes place in the solid state.The welds are susceptible to corrosion due to the microstructural changes in the weld nugget during FSW.In this work,the effect of post weld treatments,viz.,peak aging(T6) and retrogression reaging(RRA),on the microstructure,mechanical properties and pitting corrosion has been studied.Friction stir welding of 8 mm-thick AA7075 alloy was carried out.The microstructural changes of base metal and nugget zone of friction stir welds were studied using optical microscopy,scanning electron microscopy and transmission electron microscopy.Tensile and hardness test of base metal and welds has been carried out.Pitting corrosion resistance was determined through dynamic polarization test.It was observed that the hardness and strength of weld were observed to be comparatively high in peak aged(T6) condition but the welds showed poor corrosion resistance.The resistance to pitting corrosion was improved and the mechanical properties were maintained by RRA treatment.The resistance to pitting corrosion was improved in RRA condition with the minimum loss of weld strength.  相似文献   

2.
《防务技术》2015,11(2)
Friction stir welding(FSW) of high strength aluminum alloys has been emerged as an alternative joining technique to avoid the problems during fusion welding.In recent times FSW is being used for armor grade AA7075 aluminum alloy in defense,aerospace and marine applications where it has to serve in non uniform loading and corrosive environments.Even though friction stir welds of AA7075 alloy possess better mechanical properties but suffer from poor corrosion resistance.The present work involves use of retrogression and reaging(RRA) post weld heat treatment to improve the corrosion resistance of welded joints of aluminum alloys.An attempt also has been made to change the chemical composition of the weld nugget by adding B4C nano particles with the aid of the FSW on a specially prepared base metal plate in butt position.The effects of peak aged condition(T6),RRA and addition of B4C nano particles on microstructure,hardness and pitting corrosion of nugget zone of the friction stir welds of AA7075 alloy have been studied.Even though RRA improved the pitting corrosion resistance,its hardness was slightly lost.Significant improvement in pitting corrosion resistance was achieved with addition of boron carbide powder and post weld heat treatment of RRA.  相似文献   

3.
《防务技术》2015,11(3)
An attempt is made in the present study to obtain the relationships among process parameters and physical dimensions of AA6063 aluminium alloy coating on IS2062 mild steel obtained through friction surfacing and their impact on strength and ductility of the coating. Factorial experimental design technique was used to investigate and select the parameter combination to achieve a coating with adequate strength and ductility. Spindle speed, axial force and table traverse speed were observed to be the most significant factors on physical dimensions. It was observed that the thickness of the coating decreased as the coating width increased. In addition, the width and thickness of the coatings are higher at low and high torques. At intermediate torque values, when the force is high, the width of the coating is high, and its thickness is thin; and when the force is low, the width and thickness are low. The interaction effect between axial force(F)-table traverse speed(Vx) and spindle speed(N)-table traverse speed(Vx) produced an increasing effect on coating width and thickness, but other interactions exhibited decreasing influence. It has also been observed that sound coatings could be obtained in a narrow set of parameter range as the substrate-coating materials are metallurgically incompatible and have a propensity to form brittle intermetallics.  相似文献   

4.
《防务技术》2015,11(3)
The heat treatable aluminum-copper alloy AA2014 finds wide application in the aerospace and defence industry due to its high strength-toweight ratio and good ductility. Friction stir welding(FSW) process, an emerging solid state joining process, is suitable for joining this alloy compared to fusion welding processes. This work presents the formulation of a mathematical model with process parameters and tool geometry to predict the responses of friction stir welds of AA 2014-T6 aluminum alloy, viz yield strength, tensile strength and ductility. The most influential process parameters considered are spindle speed, welding speed, tilt angle and tool pin profile. A four-factor, five-level central composite design was used and a response surface methodology(RSM) was employed to develop the regression models to predict the responses.The mechanical properties, such as yield strength(YS), ultimate tensile strength(UTS) and percentage elongation(%El), are considered as responses. Method of analysis of variance was used to determine the important process parameters that affect the responses. Validation trials were carried out to validate these results. These results indicate that the friction stir welds of AA 2014-T6 aluminum alloy welded with hexagonal tool pin profile have the highest tensile strength and elongation, whereas the joints fabricated with conical tool pin profile have the lowest tensile strength and elongation.  相似文献   

5.
Industrial applications of aluminium and its alloys are restricted because of their poor tribological properties. Thermal spraying, laser surfacing, electron beam welding are the most widely used techniques to alter the surface morphology of base metal. Preliminary studies reveal that the coating and layering of aluminium alloys with ceramic particles enhance the ballistic resistance. Furthermore, among aluminium alloys,7075 aluminium alloy exhibits high strength which can be compared to that of steels and has profound applications in the designing of lightweight fortification structures and integrated protection systems. Having limitations such as poor bond integrity, formation of detrimental phases and interfacial reaction between reinforcement and substrate using fusion route to deposit hard particles paves the way to adopt friction stir processing for fabricating surface composites using different sizes of boron carbide particles as reinforcement on armour grade 7075 aluminium alloy as matrix in the present investigation. Wear and ballistic tests were carried out to assess the performance of friction stir processed AA7075 alloy. Significant improvement in wear resistance of friction stir processed surface composites is attributed to the change in wear mechanism from abrasion to adhesion. It has also been observed that the surface metal matrix composites have shown better ballistic resistance compared to the substrate AA7075 alloy. Addition of solid lubricant Mo S2 has reduced the depth of penetration of the projectile to half that of base metal AA7075 alloy. For the first time, the friction stir processing technique was successfully used to improve the wear and ballistic resistances of armour grade high strength AA7075 alloy.  相似文献   

6.
《防务技术》2014,10(4):360-370
An attempt is made to develop the tools that are capable enough to withstand the shear, impact and thermal forces that occur during friction stir welding of stainless steels. The atmospheric plasma spray and plasma transferred arc hardfacing processes are employed to deposit refractory ceramic based composite coatings on the Inconel 738 alloy. Five different combinations of self-fluxing alloy powder and 60% ceramic reinforcement particulate mixtures are used for coating. The best friction stir welding tool selected based on tool wear analysis is used to fabricate the austenitic stainless steel joints.  相似文献   

7.
《防务技术》2015,11(3)
The effect of hot-humid exposure(i.e., 40 C and 98% R.H.) on the quasi-static strength of the adhesive-bonded aluminum alloys was studied. Test results show that the hot-humid exposure leads to the significant decrease in the joint strength and the change of the failure mode from a mixed cohesive and adhesive failure with cohesive failure being dominant to adhesive failure being dominant. Careful analyses of the results reveal that the physical bond is likely responsible for the bond adhesion between L adhesive and aluminum substrates. The reduction in joint strength and the change of the failure mode resulted from the degradation in bond adhesion, which was primarily attributed to the corrosion of aluminum substrate. In addition, the elevated temperature exposure significantly accelerated the corrosion reaction of aluminum, which accelerated the degradation in joint strength.  相似文献   

8.
《防务技术》2015,11(3)
The present work is aimed at studying the microstructure and pitting corrosion behaviour of shielded metal arc welded high nitrogen steel made of Cromang-N electrode. Basis for selecting this electrode is to increase the solubility of nitrogen in weld metal due to high chromium and manganese content. Microscopic studies were carried out using optical microscopy(OM) and field emission scanning electron microscopy(FESEM). Energy back scattered diffraction(EBSD) method was used to determine the phase analysis, grain size and orientation image mapping. Potentio-dynamic polarization testing was carried out to study the pitting corrosion resistance in aerated 3.5% NaCl environment using a GillAC electrochemical system. The investigation results showed that the selected Cr-Mn-N type electrode resulted in a maximum reduction in delta-ferrite and improvement in pitting corrosion resistance of the weld zone was attributed to the coarse austenite grains owing to the reduction in active sites of the austenite/delta ferrite interface and the decrease in galvanic interaction between austenite and delta-ferrite.  相似文献   

9.
《防务技术》2015,11(3)
Super 304 H austenitic stainless steel with 3% of copper posses excellent creep strength and corrosion resistance, which is mainly used in heat exchanger tubing of the boiler. Heat exchangers are used in nuclear power plants and marine vehicles which are intended to operate in chloride rich offshore environment. Chloride stress corrosion cracking is the most likely life limiting failure with austenitic stainless steel tubing. Welding may worsen the stress corrosion cracking susceptibility of the material. Stress corrosion cracking susceptibility of Super 304 H parent metal and gas tungsten arc(GTA) welded joints were studied by constant load tests in 45% boiling Mg Cl2 solution. Stress corrosion cracking resistance of Super 304 H stainless steel was deteriorated by GTA welding due to the formation of susceptible microstructure in the HAZ of the weld joint and the residual stresses. The mechanism of cracking was found to be anodic path cracking, with transgranular nature of crack propagation. Linear relationships were derived to predict the time to failure by extrapolating the rate of steady state elongation.  相似文献   

10.
Good castability and high strength properties of Ale Si alloys are useful in defence applications like torpedoes,manufacture of Missile bodies,and parts of automobile such as engine cylinders and pistons.Poor wear resistance of the alloys is major limitation for their use.Friction stir processing(FSP) is a recognized surfacing technique as it overcomes the problems of fusion route surface modification methods.Keeping in view of the requirement of improving wear resistance of cast aluminiumesilicon alloy,friction stir processing was attempted for surface modification with boron carbide(B4C) and molybdenum disulfide(Mo S2) powders.Metallography,micro compositional analysis,hardness and pin-on-disc wear testing were used for characterizing the surface composite coating.Microscopic study revealed breaking of coarse silicon needles and uniformly distributed carbides in the A356 alloy matrix after FSP.Improvement and uniformity in hardness was obtained in surface composite layer.Higher wear resistance was achieved in friction stir processed coating with carbide powders.Addition of solid lubricant Mo S2 powder was found to improve wear resistance of the base metal significantly.  相似文献   

11.
To overcome the problems of fusion welding of aluminium alloys, the friction stir welding(FSW) is recognized as an alternative joining method to improve the mechanical and corrosion properties. Tool profile is one of the important variables which affect the performance of the FS weld. In the present work, the effect of tool profile on the weld nugget microstructure and pitting corrosion of AA2219 aluminium-copper alloy was studied. FSW of AA2219 alloy was carried out using five profiles, namely conical, square, triangle, pentagon and hexagon. The temperature measurements were made in the region adjacent to the rotating pin. It was observed that the peak temperature is more in hexagonal tool pin compared to the welds produced with other tool pin profiles. It is observed that the extensive deformation experienced at the nugget zone and the evolved microstructure strongly influences the hardness and corrosion properties of the joint during FSW. It was found that the microstructure changes like grain size, misorientation and precipitate dissolution during FSW influence the hardness and corrosion behaviour. Pitting corrosion resistance of friction stir welds of AA2219 was found to be better for hexagon profile tool compared to other profiles, which was attributed to material flow and strengthening precipitate morphology in nugget zone. Higher amount of heat generation in FS welds made with hexagonal profile tool may be the reason for greater dissolution of strengthening precipitates in nugget zone.  相似文献   

12.
低合金船体钢点蚀敏感性的研究   总被引:9,自引:1,他引:8  
通过极化试验比较了4种含有不同合金元素的低合金钢的点蚀诱发敏感性,并用电子探针对钢中的主要夹杂物及点蚀诱发后的腐蚀形态作了鉴定.结果表明:镍-铬系钢比锰系钢具有更好的耐点蚀性能;点蚀总是从夹杂物与周围钢基体毗邻的界面处开始诱发;含有硫化物的复相夹杂对点蚀的敏感性更强.  相似文献   

13.
AA2219 Ale Cu alloy is widely used in defence and aerospace applications due to required combination of high strength-to-weight ratio and toughness.Fabrication of components used for defence always involves welding.Even though the mechanical properties of the base metal are better,but the alloy suffers from poor mechanical and corrosion properties during fusion welding.To overcome the problems of fusion welding,friction stir welding(FSW) is recognized as an alternative solid state joining method aimed to improve the mechanical and corrosion properties.Tool profile is one of the important variables which affect the performance of the friction stir weld.In the present work the effect of tool profile on the microstructure and pitting corrosion of AA2219 aluminiumecopper alloy was studied.Electron backscattered diffraction results established that the grain size and orientation of weld nugget of triangle profile is finer than that of conical profile.Differential scanning calorimetric results show the evidence of precipitate dissolution during FSW.It was found that the microstructure changes,such as grain size and its orientation precipitate dissolution during FSW influence the hardness and corrosion behaviour.Pitting corrosion resistance of friction stir welds of AA2219 was found to be better for triangle profile tool compared to conical profile which is attributed to material flow and strengthening precipitate morphology in various zones.Higher amount of heat generation during FSW made using triangle profile tool may be the reason for greater dissolution of strengthening precipitates in nugget zone and coarsening in thermo mechanically affected zone(TMAZ) and heat affected zone(HAZ).  相似文献   

14.
为提高金属铜软基底的耐磨、抗蚀能力,采用脉冲激光沉积技术制备了金属铜基底上的多层结构类金刚石保护膜;其中的碳化硅-类金刚石循环层避免了类金刚石膜层中内应力的累积,降低了功能类金刚石层破裂的风险,碳化硅持力层降低了软质铜基底与高硬度类金刚石层的硬度差,金属钛层则使得铜基底与上层碳化硅层牢固结合。实验测试表明,多层结构类金刚石保护膜在铜基底上附着牢固,可通过美军标MIL-48497A规定的重摩擦和国军标GJB150.5A-2009规定的高低温冲击试验,同时能够承受弱碱溶液的腐蚀;摩擦系数低、处于0.093以下,耐磨性能好、2 h摩擦未见磨痕。针对不同金属基底特性改进工艺,该技术可应用于存在腐蚀性环境中机械工具的抗磨保护膜。  相似文献   

15.
采用多弧离子镀技术,利用Cr靶和TiAl靶,在活塞环材料65 Mn钢基体上制备了CrTiAlN复合涂层,并对电镀Cr、CrN和CrTiAlN复合涂层在800℃下的抗高温腐蚀性能进行了比较分析,用扫描电镜、能谱仪和X射线衍射仪观察分析了样品表面高温腐蚀氧化膜。结果表明:CrTiAlN复合涂层具有优异的抗高温腐蚀性能,在800℃时仍具有良好的抗高温腐蚀性能,其氧化机理是O向涂层内部扩散氧化,在高温腐蚀过程中,CrTiAlN涂层中的Cr发生了选择性氧化,优先形成了Cr2O3,CrTiAlN涂层氧化层区域的结构由外至里组成顺序为Cr2O3、Al2O3+TiO2、(Cr,Ti,Al)N。涂层外层的Cr2O3氧化物有利于阻碍氧元素向涂层内部扩散,能够降低涂层的高温腐蚀速度。  相似文献   

16.
High nitrogen stainless steel with nitrogen content of 0.75%was welded by gas metal arc welding with Ar—N2-O2 ternary shielding gas. The effect of the ternary shielding gas on the retention and improvement of nitrogen content in the weld was identified. Surfacing test was conducted first to compare the ability of O2 and CO2 in prompting nitrogen dissolution. The nitrogen content of the surfacing metal with O2 is slightly higher than CO2. And then Ar—N2-O2 shielding gas was applied to weld high nitrogen stainless steel. After using N2-containing shielding gas, the nitrogen content of the weld was improved by 0.1 wt%. As N2 continued to increase, the increment of nitrogen content was not obvious, but the ferrite decreased from the top to the bottom. When the proportion of N2 reached 20%, a full austenitic weld was obtained and the tensile strength was improved by 8.7%. Combined with the results of surfacing test and welding test, it is concluded that the main effect of N2 is to inhibit the escape of nitrogen and suppress the ni-trogen diffusion from bottom to the top in the molten pool.  相似文献   

17.
《防务技术》2015,11(3)
Naval grade high strength low alloy(HSLA) steels can be easily welded by all types of fusion welding processes. However, fusion welding of these steels leads to the problems such as cold cracking, residual stress, distortion and fatigue damage. These problems can be eliminated by solid state welding process such as friction stir welding(FSW). In this investigation, a comparative evaluation of mechanical(tensile, impact,hardness) properties and microstructural features of shielded metal arc(SMA), gas metal arc(GMA) and friction stir welded(FSW) naval grade HSLA steel joints was carried out. It was found that the use of FSW process eliminated the problems related to fusion welding processes and also resulted in the superior mechanical properties compared to GMA and SMA welded joints.  相似文献   

18.
采用多弧离子镀在304不锈钢基体表面沉积ZrN涂层。利用X射线衍射仪、扫描电子显微镜、纳米压入仪、电化学分析仪等,比较了基片方向对涂层结构、形貌、成分、沉积速率、硬度以及耐腐蚀性的影响。结果表明:基片方向不同会引起晶体择优取向的改变;垂直于靶材的样品表面大颗粒相对较少,但沉积速率只有平行样品的40%-50%;在负偏压条件下,平行于靶材的样品涂层硬度更高,而垂直样品获得更好的耐腐蚀性。  相似文献   

19.
利用微弧氧化技术的恒电流方式,在含有Na:SiO,和KF等电解质的溶液中制备了AZ91D镁合金微弧氧化层,通过扫描电镜观察分析及Cu加速盐雾腐蚀试验,研究了电解液中Na:SiO,和KF质量浓度对微弧氧化层结构及耐蚀性的影响。结果表明:在相同反应条件下,微弧氧化层厚度和表面粗糙度随Na:SiO,和KF质量浓度的增加而增加,微弧氧化层的耐蚀性取决于其表面粗糙度和厚度,粗糙度小、具有一定厚度的致密微弧氧化层耐蚀性好。  相似文献   

20.
《防务技术》2015,11(2)
The present study is to optimize the process parameters for friction welding of duplex stainless steel(DSS UNS S32205).Experiments were conducted according to central composite design.Process variables,as inputs of the neural network,included friction pressure,upsetting pressure,speed and burn-off length.Tensile strength and microhardness were selected as the outputs of the neural networks.The weld metals had higher hardness and tensile strength than the base material due to grain refinement which caused failures away from the joint interface during tensile testing.Due to shorter heating time,no secondary phase intermetallic precipitation was observed in the weld joint.A multi-layer perceptron neural network was established for modeling purpose.Five various training algorithms,belonging to three classes,namely gradient descent,genetic algorithm and LevenbergeM arquardt,were used to train artificial neural network.The optimization was carried out by using particle swarm optimization method.Confirmation test was carried out by setting the optimized parameters.In conformation test,maximum tensile strength and maximum hardness obtained are 822 MPa and 322 Hv,respectively.The metallurgical investigations revealed that base metal,partially deformed zone and weld zone maintain austenite/ferrite proportion of 50:50.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号