首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
As a generalization of k‐out‐of‐n:F and consecutive k‐out‐of‐n:F systems, the consecutive k‐within‐m‐out‐of‐n:F system consists of n linearly ordered components such that the system fails iff there are m consecutive components which include among them at least k failed components. In this article, the reliability properties of consecutive k‐within‐m‐out‐of‐n:F systems with exchangeable components are studied. The bounds and approximations for the survival function are provided. A Monte Carlo estimator of system signature is obtained and used to approximate survival function. The results are illustrated and numerics are provided for an exchangeable multivariate Pareto distribution. © 2009 Wiley Periodicals, Inc. Naval Research Logistics 2009  相似文献   

2.
A basic assumption in process mean estimation is that all process data are clean. However, many sensor system measurements are often corrupted with outliers. Outliers are observations that do not follow the statistical distribution of the bulk of the data and consequently may lead to erroneous results with respect to statistical analysis and process control. Robust estimators of the current process mean are crucial to outlier detection, data cleaning, process monitoring, and other process features. This article proposes an outlier‐resistant mean estimator based on the L1 norm exponential smoothing (L1‐ES) method. The L1‐ES statistic is essentially model‐free and demonstrably superior to existing estimators. It has the following advantages: (1) it captures process dynamics (e.g., autocorrelation), (2) it is resistant to outliers, and (3) it is easy to implement. © 2009 Wiley Periodicals, Inc. Naval Research Logistics 2009  相似文献   

3.
The Signal‐to‐Interference‐plus‐Noise Ratio (SINR) is an important metric of wireless communication link quality. SINR estimates have several important applications. These include optimizing the transmit power level for a target quality of service, assisting with handoff decisions and dynamically adapting the data rate for wireless Internet applications. Accurate SINR estimation provides for both a more efficient system and a higher user‐perceived quality of service. In this paper, we develop new SINR estimators and compare their mean squared error (MSE) performance. We show that our new estimators dominate estimators that have previously appeared in the literature with respect to MSE. The sequence of transmitted bits in wireless communication systems consists of both pilot bits (which are known both to the transmitter and receiver) and user bits (which are known only by the transmitter). The SINR estimators we consider alternatively depend exclusively on pilot bits, exclusively on user bits, or simultaneously use both pilot and user bits. In addition, we consider estimators that utilize smoothing and feedback mechanisms. Smoothed estimators are motivated by the fact that the interference component of the SINR changes relatively slowly with time, typically with the addition or departure of a user to the system. Feedback estimators are motivated by the fact that receivers typically decode bits correctly with a very high probability, and therefore user bits can be thought of as quasipilot bits. For each estimator discussed, we derive an exact or approximate formula for its MSE. Satterthwaite approximations, noncentral F distributions (singly and doubly) and distribution theory of quadratic forms are the key statistical tools used in developing the MSE formulas. In the case of approximate MSE formulas, we validate their accuracy using simulation techniques. The approximate MSE formulas, of interest in their own right for comparing the quality of the estimators, are also used for optimally combining estimators. In particular, we derive optimal weights for linearly combining an estimator based on pilot bits with an estimator based on user bits. The optimal weights depend on the MSE of the two estimators being combined, and thus the accurate approximate MSE formulas can conveniently be used. The optimal weights also depend on the unknown SINR, and therefore need to be estimated in order to construct a useable combined estimator. The impact on the MSE of the combined estimator due to estimating the weights is examined. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004  相似文献   

4.
We study the dynamic profit maximization problem for a firm exercising control on both marketing and production. The firs marketing effort impacts the current‐period demand, which in turn affects future demand in a dissipating fashion. Under linear‐cost and zero‐leadtime assumptions, we show that the firm should follow base‐point rules for both marketing and production, whereas trends of the base points reflect a certain complementarity between marketing and production. We obtain comparable results when marketing costs are convex. Our computational study identifies conditions under which simple fixed‐marketing‐effort and fixed‐marketing‐target heuristics would perform well. © 2009 Wiley Periodicals, Inc. Naval Research Logistics 2009  相似文献   

5.
Instead of measuring a Wiener degradation or performance process at predetermined time points to track degradation or performance of a product for estimating its lifetime, we propose to obtain the first‐passage times of the process over certain nonfailure thresholds. Based on only these intermediate data, we obtain the uniformly minimum variance unbiased estimator and uniformly most accurate confidence interval for the mean lifetime. For estimating the lifetime distribution function, we propose a modified maximum likelihood estimator and a new estimator and prove that, by increasing the sample size of the intermediate data, these estimators and the above‐mentioned estimator of the mean lifetime can achieve the same levels of accuracy as the estimators assuming one has failure times. Thus, our method of using only intermediate data is useful for highly reliable products when their failure times are difficult to obtain. Furthermore, we show that the proposed new estimator of the lifetime distribution function is more accurate than the standard and modified maximum likelihood estimators. We also obtain approximate confidence intervals for the lifetime distribution function and its percentiles. Finally, we use light‐emitting diodes as an example to illustrate our method and demonstrate how to validate the Wiener assumption during the testing. © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   

6.
This article presents new tools and methods for finding optimum step‐stress accelerated life test plans. First, we present an approach to calculate the large‐sample approximate variance of the maximum likelihood estimator of a quantile of the failure time distribution at use conditions from a step‐stress accelerated life test. The approach allows for multistep stress changes and censoring for general log‐location‐scale distributions based on a cumulative exposure model. As an application of this approach, the optimum variance is studied as a function of shape parameter for both Weibull and lognormal distributions. Graphical comparisons among test plans using step‐up, step‐down, and constant‐stress patterns are also presented. The results show that depending on the values of the model parameters and quantile of interest, each of the three test plans can be preferable in terms of optimum variance. © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   

7.
In this article, we present an algorithm for the valuation and optimal operation of natural gas storage facilities. Real options theory is used to derive nonlinear partial‐integro‐differential equations (PIDEs), the solution of which give both valuation and optimal operating strategies for these facilities. The equations are designed to incorporate a wide class of spot price models that can exhibit the same time‐dependent, mean‐reverting dynamics, and price spikes as those observed in most energy markets. Particular attention is paid to the operational characteristics of real storage units. These characteristics include working gas capacities, variable deliverability and injection rates, and cycling limitations. We illustrate the model with a numerical example of a salt cavern storage facility that clearly shows how a gas storage facility is like a financial straddle with both put and call properties. Depending on the amount of gas in storage the relative influence of the put and call components vary. © 2009 Wiley Periodicals, Inc. Naval Research Logistics 2009  相似文献   

8.
We study the problem of designing a two‐echelon spare parts inventory system consisting of a central plant and a number of service centers each serving a set of customers with stochastic demand. Processing and storage capacities at both levels of facilities are limited. The manufacturing process is modeled as a queuing system at the plant. The goal is to optimize the base‐stock levels at both echelons, the location of service centers, and the allocation of customers to centers simultaneously, subject to service constraints. A mixed integer nonlinear programming model (MINLP) is formulated to minimize the total expected cost of the system. The problem is NP‐hard and a Lagrangian heuristic is proposed. We present computational results and discuss the trade‐off between cost and service. © 2009 Wiley Periodicals, Inc. Naval Research Logistics 2009  相似文献   

9.
We consider the joint pricing and inventory‐control problem for a retailer who orders, stocks, and sells two products. Cross‐price effects exist between the two products, which means that the demand of each product depends on the prices of both products. We derive the optimal pricing and inventory‐control policy and show that this policy differs from the base‐stock list‐price policy, which is optimal for the one‐product problem. We find that the retailer can significantly improve profits by managing the two products jointly as opposed to independently, especially when the cross‐price demand elasticity is high. We also find that the retailer can considerably improve profits by using dynamic pricing as opposed to static pricing, especially when the demand is nonstationary. © 2009 Wiley Periodicals, Inc. Naval Research Logistics, 2009  相似文献   

10.
Todas information and communication network requires a design that is secure to tampering. Traditional performance measures of reliability and throughput must be supplemented with measures of security. Recognition of an adversary who can inflict damage leads toward a game‐theoretic model. Through such a formulation, guidelines for network designs and improvements are derived. We opt for a design that is most robust to withstand both natural degradation and adversarial attacks. Extensive computational experience with such a model suggests that a Nash‐equilibrium design exists that can withstand the worst possible damage. Most important, the equilibrium is value‐free in that it is stable irrespective of the unit costs associated with reliability vs. capacity improvement and how one wishes to trade between throughput and reliability. This finding helps to pinpoint the most critical components in network design. From a policy standpoint, the model also allows the monetary value of information‐security to be imputed. © 2009 Wiley Periodicals, Inc. Naval Research Logistics, 2009  相似文献   

11.
The point availability of a one‐unit system at a specified time is defined as the probability that the component is operating at that time. When both operating time and repair time are subject to random (right) censorship, we propose an asymptotic nonparametric approach for constructing confidence intervals for the point availability of the system. The technique is based on the fact that a product limit estimator converges to a Gaussian process. The method is also extended to finding confidence intervals for the point availability of a complex system using the δ‐Method. © 1999 John Wiley & Sons, Inc. Naval Research Logistics 46: 119–127, 1999  相似文献   

12.
In financial engineering, sensitivities of derivative prices (also known as the Greeks) are important quantities in risk management, and stochastic gradient estimation methods are used to estimate them given the market parameters. In practice, the surface (function) of the Greeks with respect to the underlying parameters is much more desired, because it can be used in real‐time risk management. In this paper, we consider derivatives with multiple underlying assets, and propose three stochastic kriging‐based methods, the element‐by‐element, the importance mapping, and the Cholesky decomposition, to fit the surface of the gamma matrix that can fulfill the time constraint and the precision requirement in real‐time risk management. Numerical experiments are provided to illustrate the effectiveness of the proposed methods.  相似文献   

13.
This article provides formulas for estimating the parameters to be used in the basic EOQ lot-size model. The analysis assumes that the true values of these parameters are unknown over known ranges and perhaps nonstationary over time. Two measures of estimator “goodness” are derived from EOQ sensitivity analysis. Formulas are given for computing the minimax choice and the minimum expected value choice for the parameter estimates using both measures of estimator “goodness”. A numerical example is included.  相似文献   

14.
We formulate exact expressions for the expected values of selected estimators of the variance parameter (that is, the sum of covariances at all lags) of a steady‐state simulation output process. Given in terms of the autocovariance function of the process, these expressions are derived for variance estimators based on the simulation analysis methods of nonoverlapping batch means, overlapping batch means, and standardized time series. Comparing estimator performance in a first‐order autoregressive process and the M/M/1 queue‐waiting‐time process, we find that certain standardized time series estimators outperform their competitors as the sample size becomes large. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   

15.
The client‐contractor bargaining problem addressed here is in the context of a multi‐mode resource constrained project scheduling problem with discounted cash flows, which is formulated as a progress payments model. In this model, the contractor receives payments from the client at predetermined regular time intervals. The last payment is paid at the first predetermined payment point right after project completion. The second payment model considered in this paper is the one with payments at activity completions. The project is represented on an Activity‐on‐Node (AON) project network. Activity durations are assumed to be deterministic. The project duration is bounded from above by a deadline imposed by the client, which constitutes a hard constraint. The bargaining objective is to maximize the bargaining objective function comprised of the objectives of both the client and the contractor. The bargaining objective function is expected to reflect the two‐party nature of the problem environment and seeks a compromise between the client and the contractor. The bargaining power concept is introduced into the problem by the bargaining power weights used in the bargaining objective function. Simulated annealing algorithm and genetic algorithm approaches are proposed as solution procedures. The proposed solution methods are tested with respect to solution quality and solution times. Sensitivity analyses are conducted among different parameters used in the model, namely the profit margin, the discount rate, and the bargaining power weights. © 2009 Wiley Periodicals, Inc. Naval Research Logistics, 2009  相似文献   

16.
We study a multi‐item capacitated lot‐sizing problem with setup times and pricing (CLSTP) over a finite and discrete planning horizon. In this class of problems, the demand for each independent item in each time period is affected by pricing decisions. The corresponding demands are then satisfied through production in a single capacitated facility or from inventory, and the goal is to set prices and determine a production plan that maximizes total profit. In contrast with many traditional lot‐sizing problems with fixed demands, we cannot, without loss of generality, restrict ourselves to instances without initial inventories, which greatly complicates the analysis of the CLSTP. We develop two alternative Dantzig–Wolfe decomposition formulations of the problem, and propose to solve their relaxations using column generation and the overall problem using branch‐and‐price. The associated pricing problem is studied under both dynamic and static pricing strategies. Through a computational study, we analyze both the efficacy of our algorithms and the benefits of allowing item prices to vary over time. © 2009 Wiley Periodicals, Inc. Naval Research Logistics, 2010  相似文献   

17.
本文研究再入弹道参数的自适应估计。所采用的方法对动力学模型噪声的未知统计特性进行补偿,并对状态参数与测量设备的系统误差交叉进行估计。仿真结果表明,无论是状态参数的估计还是测量系统误差的估计,都具有较高的精度。  相似文献   

18.
The exact evaluation of the probability that the maximum st‐flow is greater than or equal to a fixed demand in a stochastic flow network is an NP‐hard problem. This limitation leads one to consider Monte Carlo alternatives. In this paper, we propose a new importance sampling Monte Carlo method. It is based on a recursive use of the state space decomposition methodology of Doulliez and Jamoulle during the simulation process. We show theoretically that the resulting estimator belongs to the variance‐reduction family and we give an upper bound on its variance. As shown by experimental tests, the new sampling principle offers, in many cases, substantial speedups with respect to a previous importance sampling based on the same decomposition procedure and its best performances are obtained when highly reliable networks are analyzed. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 204–228, 2002; DOI 10.1002/nav.10004  相似文献   

19.
The statistical properties of an estimator of a source location were established by simulation for the case in which the source location is estimated—using transformation of lines to points—from the angles in which different observers see the source, and both the assumed locations of the observer points and the observed angles are subject to error. It was found that for normal error distributions the estimator is unbiased, and the resulting estimates are approximately normally distributed with a small standard deviation. An easy-to-use and reliable forecasting formula was suggested to forecast the parameters of the distributions of the estimates for different observer-source relationships. © 1993 John Wiley & Sons, Inc.  相似文献   

20.
This article develops a mathematical model and heuristic algorithm to design recreational boating mooring fields. The boating industry is important to the Florida economy, and boat storage is becoming a concern among those in the industry. The mooring field design problem is formulated to maximize the total number of boat feet moored in the mooring field. In the model, we allow two adjacent moorings to overlap, which introduces a risk that under certain conditions the boats on these moorings could contact each other. We identify the conditions when contact is possible and quantify the probability of contact. The mooring field design problem is formulated as a nonlinear mixed‐integer programming problem. To solve the problem, we decompose it into two separate models, a mooring radii assignment model and a mooring layout model, which are solved sequentially. The first is solved via exhaustive enumeration and the second via a depth‐first search algorithm. Two actual mooring fields are evaluated, and in both cases our model leads to better layouts than ones experts developed manually. The mooring field design model rationalizes the mooring field design and shows that in one case by increasing the risk from 0 to 1%, the mooring efficiency increases from 74.8% to 96.2%. © 2009 Wiley Periodicals, Inc. Naval Research Logistics, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号