首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 380 毫秒
1.
Suppose one object is hidden in the k-th of n boxes with probability p(k). The boxes are to be searched sequentially. Associated with the j-th search of box k is a cost c(j,k) and a conditional probability q(j,k) that the first j - 1 searches of box k are unsuccessful while the j-th search is successful given that the object is hidden in box k. The problem is to maximize the probability that we find the object if we are not allowed to offer more than L for the search. We prove the existence of an optimal allocation of the search effort L and state an algorithm for the construction of an optimal allocation. Finally, we discuss some problems concerning the complexity of our problem.  相似文献   

2.
This paper deals with a two‐person zero‐sum game called a search allocation game, where a searcher and a target participate, taking account of false contacts. The searcher distributes his search effort in a search space in order to detect the target. On the other hand, the target moves to avoid the searcher. As a payoff of the game, we take the cumulative amount of search effort weighted by the target distribution, which can be derived as an approximation of the detection probability of the target. The searcher's strategy is a plan of distributing search effort and the target's is a movement represented by a path or transition probability across the search space. In the search, there are false contacts caused by environmental noises, signal processing noises, or real objects resembling true targets. If they happen, the searcher must take some time for their investigation, which interrupts the search for a while. There have been few researches dealing with search games with false contacts. In this paper, we formulate the game into a mathematical programming problem to obtain its equilibrium point. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   

3.
Much work has been done in search theory; however, very little effort has occurred where an object's presence at a location can be accepted when no object is present there. The case analyzed is of this type. The number of locations is finite, a single object is stationary at one location, and only one location is observed each step of the search. The object's location has a known prior probability distribution. Also known are the conditional probability of acceptance given the object's absence (small) and the conditional probability of rejection given the object's presence (not too large); these Probabilities remain fixed for all searching and locations. The class of sequential search policies which terminate the search at the first acceptance is assumed. A single two-part optimization criterion is considered. The search sequence is found which (i) minimizes the probability of obtaining n rejections in the first n steps for all n, and (ii) maximizes the probability that the first acceptance occurs within the first n steps and occurs at the object's location for all n. The optimum sequential search policy specifies that the next location observed is one with the largest posterior probability of the object's presence (evaluated after each step from Bayes Rule) and that the object is at the first location where acceptance occurs. Placement at the first acceptance seems appropriate when the conditional probability of acceptance given the object's absence is sufficiently small. Search always terminates (with probability one). Optimum truncated sequential policies are also considered. Methods are given for evaluating some pertinent properties and for investigating the possibility that no object occurs at any location.  相似文献   

4.
The purpose of this article is to present an algorithm for globally maximizing the ratio of two convex functions f and g over a convex set X. To our knowledge, this is the first algorithm to be proposed for globally solving this problem. The algorithm uses a branch and bound search to guarantee that a global optimal solution is found. While it does not require the functions f and g to be differentiable, it does require that subgradients of g can be calculated efficiently. The main computational effort of the algorithm involves solving a sequence of subproblems that can be solved by convex programming methods. When X is polyhedral, these subproblems can be solved by linear programming procedures. Because of these properties, the algorithm offers a potentially attractive means for globally maximizing ratios of convex functions over convex sets. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2006  相似文献   

5.
We investigate the problem in which an agent has to find an object that moves between two locations according to a discrete Markov process (Pollock, Operat Res 18 (1970) 883–903). At every period, the agent has three options: searching left, searching right, and waiting. We assume that waiting is costless whereas searching is costly. Moreover, when the agent searches the location that contains the object, he finds it with probability 1 (i.e. there is no overlooking). Waiting can be useful because it could induce a more favorable probability distribution over the two locations next period. We find an essentially unique (nearly) optimal strategy, and prove that it is characterized by two thresholds (as conjectured by Weber, J Appl Probab 23 (1986) 708–717). We show, moreover, that it can never be optimal to search the location with the lower probability of containing the object. The latter result is far from obvious and is in clear contrast with the example in Ross (1983) for the model without waiting. © 2009 Wiley Periodicals, Inc. Naval Research Logistics 2009  相似文献   

6.
This paper considers the search for an evader concealed in one of two regions, each of which is characterized by its detection probability. The single-sided problem, in which the searcher is told the probability of the evader being located in a particular region, has been examined previously. We shall be concerned with the double-sided problem in which the evader chooses this probability secretly, although he may not subsequently move: his optimal strategy consists of that probability distribution which maximizes the expected time to detection, while the searcher's optimal strategy is the sequence of searches which limits the evader to this expected time. It transpires for this problem that optimal strategies for both searcher and evader may generally be obtained to a surprisingly good degree of approximation by using the optimal strategies for the closely related (but far more easily solved) problem in which the evader is completely free to move between searches.  相似文献   

7.
This article addresses the inventory placement problem in a serial supply chain facing a stochastic demand for a single planning period. All customer demand is served from stage 1, where the product is stored in its final form. If the demand exceeds the supply at stage 1, then stage 1 is resupplied from stocks held at the upstream stages 2 through N, where the product may be stored in finished form or as raw materials or subassemblies. All stocking decisions are made before the demand occurs. The demand is nonnegative and continuous with a known probability distribution, and the purchasing, holding, shipping, processing, and shortage costs are proportional. There are no fixed costs. All unsatisfied demand is lost. The objective is to select the stock quantities that should be placed different stages so as to maximize the expected profit. Under reasonable cost assumptions, this leads to a convex constrained optimization problem. We characterize the properties of the optimal solution and propose an effective algorithm for its computation. For the case of normal demands, the calculations can be done on a spreadsheet. © 2001 John Wiley & Sons, Inc. Naval Research Logistics 48:506–517, 2001  相似文献   

8.
This paper deals with a two searchers game and it investigates the problem of how the possibility of finding a hidden object simultaneously by players influences their behavior. Namely, we consider the following two‐sided allocation non‐zero‐sum game on an integer interval [1,n]. Two teams (Player 1 and 2) want to find an immobile object (say, a treasure) hidden at one of n points. Each point i ∈ [1,n] is characterized by a detection parameter λi (μi) for Player 1 (Player 2) such that pi(1 ? exp(?λixi)) (pi(1 ? exp(?μiyi))) is the probability that Player 1 (Player 2) discovers the hidden object with amount of search effort xi (yi) applied at point i where pi ∈ (0,1) is the probability that the object is hidden at point i. Player 1 (Player 2) undertakes the search by allocating the total amount of effort X(Y). The payoff for Player 1 (Player 2) is 1 if he detects the object but his opponent does not. If both players detect the object they can share it proportionally and even can pay some share to an umpire who takes care that the players do not cheat each other, namely Player 1 gets q1 and Player 2 gets q2 where q1 + q2 ≤ 1. The Nash equilibrium of this game is found and numerical examples are given. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   

9.
We consider the optimal wagers to be made by a gambler who starts with a given initial wealth. The gambler faces a sequence of two-outcome games, i.e., “win” vs. “lose,” and wishes to maximize the expected value of his terminal utility. It has been shown by Kelly, Bellman, and others that if the terminal utility is of the form log x, where x is the terminal wealth, then the optimal policy is myopic, i.e., the optimal wager is always to bet a constant fraction of the wealth provided that the probability of winning exceeds the probability of losing. In this paper we provide a critique of the simple logarithmic assumption for the utility of terminal wealth and solve the problem with a more general utility function. We show that in the general case, the optimal policy is not myopic, and we provide analytic expressions for optimal wager decisions in terms of the problem parameters. We also provide conditions under which the optimal policy reduces to the simple myopic case. © 1997 John Wiley & Sons, Inc. Naval Research Logistics 44: 639–654, 1997  相似文献   

10.
This paper considers the search for an evader concealed in one of an arbitrary number of regions, each of which is characterized by its detection probability. We shall be concerned here with the double-sided problem in which the evader chooses this probability secretly, although he may not subsequently move; his aim is to maximize the expected time to detection, while the searcher attempts to minimize it. The situation where two regions are involved has been studied previously and reported on recently. This paper represents a continuation of this analysis. It is normally true that as the number of regions increases, optimal strategies for both searcher and evader are progressively more difficult to determine precisely. However it will be shown that, generally, satisfactory approximations to each are almost as easily derived as in the two region problem, and that the accuracy of such approximations is essentially independent of the number of regions. This means that so far as the evader is concerned, characteristics of the two-region problem may be used to assess the accuracy of such approximate strategies for problems of more than two regions.  相似文献   

11.
This paper discusses the operations analysis in the underwater search for the remains of the submarine Scorpion The a priori target location probability distribution for the search was obtained by monte-carlo procedures based upon nine different scenarios concerning the Scorpion loss and associated credibility weights. These scenarios and weights were postulated by others. Scorpion was found within 260 yards of the search grid cell having the largest a priori probability Frequent computations of local effectiveness probabilities (LEPs) were carried out on scene during the search and were used to determine an updated (a posteriori) target location distribution. This distribution formed the basis for recommendation of the current high probability areas for search The sum of LEPs weighted by the a priori target location probabilities is called search effectiveness probability (SEP) and was used as the overall measure of effectiveness for the operation. SEP and LEPs were used previously in the Mediterranean H-bomb search On-scene and stateside operations analysis are discussed and the progress of the search is indicated by values of SEP for various periods during the operation.  相似文献   

12.
We study an (R, s, S) inventory control policy with stochastic demand, lost sales, zero lead‐time and a target service level to be satisfied. The system is modeled as a discrete time Markov chain for which we present a novel approach to derive exact closed‐form solutions for the limiting distribution of the on‐hand inventory level at the end of a review period, given the reorder level (s) and order‐up‐to level (S). We then establish a relationship between the limiting distributions for adjacent values of the reorder point that is used in an efficient recursive algorithm to determine the optimal parameter values of the (R, s, S) replenishment policy. The algorithm is easy to implement and entails less effort than solving the steady‐state equations for the corresponding Markov model. Point‐of‐use hospital inventory systems share the essential characteristics of the inventory system we model, and a case study using real data from such a system shows that with our approach, optimal policies with significant savings in inventory management effort are easily obtained for a large family of items.  相似文献   

13.
This article concerns the location of a facility among n points where the points are serviced by “tours” taken from the facility. Tours include m points at a time and each group of m points may become active (may need a tour) with some known probability. Distances are assumed to be rectilinear. For m ≤ 3, it is proved that the objective function is separable in each dimension and an exact solution method is given that involves finding the median of numbers appropriately generated from the problem data. It is shown that the objective function becomes multimodal when some tours pass through four or more points. A bounded heuristic procedure is suggested for this latter case. This heuristic involves solving an auxiliary three-point tour location problem.  相似文献   

14.
Typically weapon systems have an inherent systematic error and a random error for each round, centered around its mean point of impact. The systematic error is common to all aimings. Assume such a system for which there is a preassigned amount of ammunition of n rounds to engage a given target simultaneously, and which is capable of administering their fire with individual aiming points (allowing “offsets”). The objective is to determine the best aiming points for the system so as to maximize the probability of hitting the target by at least one of the n rounds. In this paper we focus on the special case where the target is linear (one‐dimensional) and there are no random errors. We prove that as long as the aiming error is symmetrically distributed and possesses one mode at zero, the optimal aiming is independent of the particular error distribution, and we specify the optimal aiming points. Possible extensions are further discussed, as well as civilian applications in manufacturing, radio‐electronics, and detection. © 1999 John Wiley & Sons, Inc. Naval Research Logistics 46: 323–333, 1999  相似文献   

15.
A rule that constrains decision‐makers is enforced by an inspector who is supplied with a fixed level of inspection resources—inspection personnel, equipment, or time. How should the inspector distribute its inspection resources over several independent inspectees? What minimum level of resources is required to deter all violations? Optimal enforcement problems occur in many contexts; the motivating application for this study is the role of the International Atomic Energy Agency in support of the Treaty on the Non‐Proliferation of Nuclear Weapons. Using game‐theoretic models, the resource level adequate for deterrence is characterized in a two‐inspectee problem with inspections that are imperfect in the sense that violations can be missed. Detection functions, or probabilities of detecting a violation, are assumed to be increasing in inspection resources, permitting optimal allocations over inspectees to be described both in general and in special cases. When detection functions are convex, inspection effort should be concentrated on one inspectee chosen at random, but when they are concave it should be spread deterministicly over the inspectees. Our analysis provides guidance for the design of arms‐control verification operations, and implies that a priori constraints on the distribution of inspection effort can result in significant inefficiencies. © 2003 Wiley Periodicals, Inc. Naval Research Logistics, 2004.  相似文献   

16.
In this paper we consider a simple three-order-statistic asymptotically unbiased estimator of the Weibull shape parameter c for the case in which all three parameters are unknown. Optimal quantiles that minimize the asymptotic variance of this estimator, c? are determined and shown to depend only on the true (unknown) shape parameter value c and in a rather insensitive way. Monte Carlo studies further verified that, in practice where the true shape parameter c is unknown, using always c? with the optimal quantities that correspond to c = 2.0 produces estimates, c?, remarkably close to the theoretical optimal. A second stage estimation procedure, namely recalculating c? based on the optimal quantiles corresponding to c?, was not worth the additional effort. Benchmark simulation comparisons were also made with the best percentile estimator of Zanakis [20] and with a new estimator of Wyckoff, Bain and Engelhardt [18], one that appears to be the best of proposed closed-form estimators but uses all sample observations. The proposed estimator, c?, should be of interest to practitioners having limited resources and to researchers as a starting point for more accurate iterative estimation procedures. Its form is independent of all three Weibull parameters and, for not too large sample sizes, it requires the first, last and only one other (early) ordered observation. Practical guidelines are provided for choosing the best anticipated estimator of shape for a three-parameter Weibull distribution under different circumstances.  相似文献   

17.
This article considers the preventive flow interception problem (FIP) on a network. Given a directed network with known origin‐destination path flows, each generating a certain amount of risk, the preventive FIP consists of optimally locating m facilities on the network in order to maximize the total risk reduction. A greedy search heuristic as well as several variants of an ascent search heuristic and of a tabu search heuristic are presented for the FIP. Computational results indicate that the best versions of the latter heuristics consistently produce optimal or near optimal solutions on test problems. © 2000 John Wiley & Sons, Inc. Naval Research Logistics 47: 287–303, 2000  相似文献   

18.
We consider the problem of safely and swiftly navigating through a spatial arrangement of potential hazard detections in which each detection has associated with it a probability that the detection is indeed a true hazard. When in close proximity to a detection, we assume the ability—for a cost—to determine whether or not the hazard is real. Our approach to this problem involves a new object, the random disambiguation path (RDP), which is a curve‐valued random variable parametrized by a binary tree with particular properties. We prove an admissibility result showing that there is positive probability that the use of an RDP reduces the expected traversal length compared to the conventional shortest zero‐risk path, and we introduce a practically computable additive‐constant approximation to the optimal RDP. The theoretical considerations are complemented by simulation and example. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005  相似文献   

19.
The first problem considered in this paper is concerned with the assembly of independent components into parallel systems so as to maximize the expected number of systems that perform satisfactorily. Associated with each component is a probability of it performing successfully. It is shown that an optimal assembly is obtained if the reliability of each assembled system can be made equal. If such equality is not attainable, then bounds are given so that the maximum expected number of systems that perform satisfactorily will lie within these stated bounds; the bounds being a function of an arbitrarily chosen assembly. An improvement algorithm is also presented. A second problem treated is concerned with the optimal design of a system. Instead of assembling given units, there is an opportunity to “control” their quality, i.e., the manufacturer is able to fix the probability, p, of a unit performing successfully. However, his resources, are limited so that a constraint is imposed on these probabilities. For (1) series systems, (2) parallel systems, and (3) k out of n systems, results are obtained for finding the optimal p's which maximize the reliability of a single system, and which maximize the expected number of systems that perform satisfactorily out of a total assembly of J systems.  相似文献   

20.
This paper provides an overview of the Computer-Assisted Search Planning (CASP) system developed for the United States Coast Guard. The CASP information processing methodology is based upon Monte Carlo simulation to obtain an initial probability distribution for target location and to update this distribution to account for drift due to currents and winds. A multiple scenario approach is employed to generate the initial probability distribution. Bayesian updating is used to reflect negative information obtained from unsuccessful search. The principal output of the CASP system is a sequence of probability “maps” which display the current target location probability distributions throughout the time period of interest. CASP also provides guidance for allocating search effort based upon optimal search theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号