首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Suppose one object is hidden in the k-th of n boxes with probability p(k). The boxes are to be searched sequentially. Associated with the j-th search of box k is a cost c(j,k) and a conditional probability q(j,k) that the first j - 1 searches of box k are unsuccessful while the j-th search is successful given that the object is hidden in box k. The problem is to maximize the probability that we find the object if we are not allowed to offer more than L for the search. We prove the existence of an optimal allocation of the search effort L and state an algorithm for the construction of an optimal allocation. Finally, we discuss some problems concerning the complexity of our problem.  相似文献   

2.
This paper considers the problem of finding optimal solutions to a class of separable constrained extremal problems involving nonlinear functionals. The results are proved for rather general situations, but they may be easily stated for the case of search for a stationary object whose a priori location distribution is given by a density function on R, a subset of Euclidean n-space. The functional to be optimized in this case is the probability of detection and the constraint is on the amount of effort to be used Suppose that a search of the above type is conducted in such a manner as to produce the maximum increase in probability of detection for each increment of effort added to the search. Then under very weak assumptions, it is proven that this search will produce an optimal allocation of the total effort involved. Under some additional assumptions, it is shown that any amount of search effort may be allocated in an optimal fashion.  相似文献   

3.
We consider the salvo policy problem, in which there are k moments, called salvos, at which we can fire multiple missiles simultaneously at an incoming object. Each salvo is characterized by a probability pi: the hit probability of a single missile. After each salvo, we can assess whether the incoming object is still active. If it is, we fire the missiles assigned to the next salvo. In the salvo policy problem, the goal is to assign at most n missiles to salvos in order to minimize the expected number of missiles used. We consider three problem versions. In Gould's version, we have to assign all n missiles to salvos. In the Big Bomb version, a cost of B is incurred when all salvo's are unsuccessful. Finally, we consider the Quota version in which the kill probability should exceed some quota Q. We discuss the computational complexity and the approximability of these problem versions. In particular, we show that Gould's version and the Big Bomb version admit pseudopolynomial time exact algorithms and fully polynomial time approximation schemes. We also present an iterative approximation algorithm for the Quota version, and show that a related problem is NP-complete.  相似文献   

4.
This paper discusses the operations analysis in the underwater search for the remains of the submarine Scorpion The a priori target location probability distribution for the search was obtained by monte-carlo procedures based upon nine different scenarios concerning the Scorpion loss and associated credibility weights. These scenarios and weights were postulated by others. Scorpion was found within 260 yards of the search grid cell having the largest a priori probability Frequent computations of local effectiveness probabilities (LEPs) were carried out on scene during the search and were used to determine an updated (a posteriori) target location distribution. This distribution formed the basis for recommendation of the current high probability areas for search The sum of LEPs weighted by the a priori target location probabilities is called search effectiveness probability (SEP) and was used as the overall measure of effectiveness for the operation. SEP and LEPs were used previously in the Mediterranean H-bomb search On-scene and stateside operations analysis are discussed and the progress of the search is indicated by values of SEP for various periods during the operation.  相似文献   

5.
This paper deals with a two searchers game and it investigates the problem of how the possibility of finding a hidden object simultaneously by players influences their behavior. Namely, we consider the following two‐sided allocation non‐zero‐sum game on an integer interval [1,n]. Two teams (Player 1 and 2) want to find an immobile object (say, a treasure) hidden at one of n points. Each point i ∈ [1,n] is characterized by a detection parameter λi (μi) for Player 1 (Player 2) such that pi(1 ? exp(?λixi)) (pi(1 ? exp(?μiyi))) is the probability that Player 1 (Player 2) discovers the hidden object with amount of search effort xi (yi) applied at point i where pi ∈ (0,1) is the probability that the object is hidden at point i. Player 1 (Player 2) undertakes the search by allocating the total amount of effort X(Y). The payoff for Player 1 (Player 2) is 1 if he detects the object but his opponent does not. If both players detect the object they can share it proportionally and even can pay some share to an umpire who takes care that the players do not cheat each other, namely Player 1 gets q1 and Player 2 gets q2 where q1 + q2 ≤ 1. The Nash equilibrium of this game is found and numerical examples are given. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   

6.
A classic problem in Search Theory is one in which a searcher allocates resources to the points of the integer interval [1, n] in an attempt to find an object which has been hidden in them using a known probability function. In this paper we consider a modification of this problem in which there is a protector who can also allocate resources to the points; allocating these resources makes it more difficult for the searcher to find an object. We model the situation as a two‐person non‐zero‐sum game so that we can take into account the fact that using resources can be costly. It is shown that this game has a unique Nash equilibrium when the searcher's probability of finding an object located at point i is of the form (1 − exp (−λixi)) exp (−μiyi) when the searcher and protector allocate resources xi and yi respectively to point i. An algorithm to find this Nash equilibrium is given. © 2000 John Wiley & Sons, Inc. Naval Research Logistics 47:85–96, 2000  相似文献   

7.
We investigate the problem in which an agent has to find an object that moves between two locations according to a discrete Markov process (Pollock, Operat Res 18 (1970) 883–903). At every period, the agent has three options: searching left, searching right, and waiting. We assume that waiting is costless whereas searching is costly. Moreover, when the agent searches the location that contains the object, he finds it with probability 1 (i.e. there is no overlooking). Waiting can be useful because it could induce a more favorable probability distribution over the two locations next period. We find an essentially unique (nearly) optimal strategy, and prove that it is characterized by two thresholds (as conjectured by Weber, J Appl Probab 23 (1986) 708–717). We show, moreover, that it can never be optimal to search the location with the lower probability of containing the object. The latter result is far from obvious and is in clear contrast with the example in Ross (1983) for the model without waiting. © 2009 Wiley Periodicals, Inc. Naval Research Logistics 2009  相似文献   

8.
In an accumulation game, a HIDER attempts to accumulate a certain number of objects or a certain quantity of material before a certain time, and a SEEKER attempts to prevent this. In a continuous accumulation game the HIDER can pile material either at locations $1, 2, …, n, or over a region in space. The HIDER will win (payoff 1) it if accumulates N units of material before a given time, and the goal of the SEEKER will win (payoff 0) otherwise. We assume the HIDER can place continuous material such as fuel at discrete locations i = 1, 2, …, n, and the game is played in discrete time. At each time k > 0 the HIDER acquires h units of material and can distribute it among all of the locations. At the same time, k, the SEEKER can search a certain number s < n of the locations, and will confiscate (or destroy) all material found. After explicitly describing what we mean by a continuous accumulation game on discrete locations, we prove a theorem that gives a condition under which the HIDER can always win by using a uniform distribution at each stage of the game. When this condition does not hold, special cases and examples show that the resulting game becomes complicated even when played only for a single stage. We reduce the single stage game to an optimization problem, and also obtain some partial results on its solution. We also consider accumulation games where the locations are arranged in either a circle or in a line segment and the SEEKER must search a series of adjacent locations. © 2002 John Wiley & Sons, Inc. Naval Research Logistics, 49: 60–77, 2002; DOI 10.1002/nav.1048  相似文献   

9.
10.
This article concerns the location of a facility among n points where the points are serviced by “tours” taken from the facility. Tours include m points at a time and each group of m points may become active (may need a tour) with some known probability. Distances are assumed to be rectilinear. For m ≤ 3, it is proved that the objective function is separable in each dimension and an exact solution method is given that involves finding the median of numbers appropriately generated from the problem data. It is shown that the objective function becomes multimodal when some tours pass through four or more points. A bounded heuristic procedure is suggested for this latter case. This heuristic involves solving an auxiliary three-point tour location problem.  相似文献   

11.
The first problem considered in this paper is concerned with the assembly of independent components into parallel systems so as to maximize the expected number of systems that perform satisfactorily. Associated with each component is a probability of it performing successfully. It is shown that an optimal assembly is obtained if the reliability of each assembled system can be made equal. If such equality is not attainable, then bounds are given so that the maximum expected number of systems that perform satisfactorily will lie within these stated bounds; the bounds being a function of an arbitrarily chosen assembly. An improvement algorithm is also presented. A second problem treated is concerned with the optimal design of a system. Instead of assembling given units, there is an opportunity to “control” their quality, i.e., the manufacturer is able to fix the probability, p, of a unit performing successfully. However, his resources, are limited so that a constraint is imposed on these probabilities. For (1) series systems, (2) parallel systems, and (3) k out of n systems, results are obtained for finding the optimal p's which maximize the reliability of a single system, and which maximize the expected number of systems that perform satisfactorily out of a total assembly of J systems.  相似文献   

12.
The signature of a system with independent and identically distributed (i.i.d.) component lifetimes is a vector whose ith element is the probability that the ith component failure is fatal to the system. System signatures have been found to be quite useful tools in the study and comparison of engineered systems. In this article, the theory of system signatures is extended to versions of signatures applicable in dynamic reliability settings. It is shown that, when a working used system is inspected at time t and it is noted that precisely k failures have occurred, the vector s [0,1]nk whose jth element is the probability that the (k + j)th component failure is fatal to the system, for j = 1,2,2026;,nk, is a distribution‐free measure of the design of the residual system. Next, known representation and preservation theorems for system signatures are generalized to dynamic versions. Two additional applications of dynamic signatures are studied in detail. The well‐known “new better than used” (NBU) property of aging systems is extended to a uniform (UNBU) version, which compares systems when new and when used, conditional on the known number of failures. Sufficient conditions are given for a system to have the UNBU property. The application of dynamic signatures to the engineering practice of “burn‐in” is also treated. Specifically, we consider the comparison of new systems with working used systems burned‐in to a given ordered component failure time. In a reliability economics framework, we illustrate how one might compare a new system to one successfully burned‐in to the kth component failure, and we identify circumstances in which burn‐in is inferior (or is superior) to the fielding of a new system. © 2009 Wiley Periodicals, Inc. Naval Research Logistics, 2009  相似文献   

13.
We consider the effects of cueing in a cooperative search mission that involves several autonomous agents. Two scenarios are discussed: one in which the search is conducted by a number of identical search‐and‐engage vehicles and one where these vehicles are assisted by a search‐only (reconnaissance) asset. The cooperation between the autonomous agents is facilitated via cueing, i.e., the information transmitted to the agents by a searcher that has just detected a target. The effect of cueing on the target detection probability is derived from first principles using a Markov chain analysis. In particular, it is demonstrated that the benefit of cueing on the system's effectiveness is bounded. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2006  相似文献   

14.
This paper presents an extension of gold-mining problems formulated in earlier work by R. Bellman and J. Kadane. Bellman assumes there are two gold mines labeled A and B, respectively, each with a known initial amount of gold. There is one delicate gold-mining machine which can be used to excavate one mine per day. Associated with mine A is a known constant return rate and a known constant probability of breakdown. There is also a return rate and probability of breakdown for mine B. Bellman solves the problem of finding a sequential decision procedure to maximize the expected amount of gold obtained before breakdown of the machine. Kadane extends the problem by assuming that there are several mines and that there are sequences of constants such that the jth constant for each mine represents the return rate for the jth excavation of that mine. He also assumes that the probability of breakdown during the jth excavation of a mine depends on j. We extend these results by assuming that the return rates are random variables with known joint distribution and by allowing the probability of breakdown to be a function of previous observations on the return rates. We show that under certain regularity conditions on the joint distributions of the random variables, the optimal policy is: at each stage always select a mine which has maximal conditional expected return per unit risk. This gold-mining problem is also a formulation of the problem of time-sequential tactical allocation of bombers to targets. Several examples illustrating these results are presented.  相似文献   

15.
This paper considers the problem of the optimal redeployment of a resource among different geographical locations. Initially, it is assumed that at each location i, i = 1,…, n, the level of availability of the resource is given by a1 ≧ 0. At time t > 0, requirements Rf(t) ≧ 0 are imposed on each location which, in general, will differ from the a1. The resource can be transported from any one location to any other in magnitudes which will depend on t and the distance between these locations. It is assumed that ΣRj > Σat The objective function consideis, in addition to transportation costs incurred by reallocation, the degree to which the resource availabilities after redeployment differ from the requirements. We shall associate the unavailabilities at the locations with the unreadiness of the system and discuss the optimal redeployment in terms of the minimization of the following functional forms: \documentclass{article}\pagestyle{empty}\begin{document}$ \sum\limits_{j = 1}^n {kj(Rj - yj) + } $\end{document} transportation costs, Max \documentclass{article}\pagestyle{empty}\begin{document}$ \mathop {Max}\limits_j \,[kj(Rj - yj)] + $\end{document} transportation costs, and \documentclass{article}\pagestyle{empty}\begin{document}$ \sum\limits_{j = 1}^n {kj(Rj - yj)^2 + } $\end{document} transportation costs. The variables yj represent the final amount of the resource available at location j. No benefits are assumed to accrue at any location if yj > Rj. A numerical three location example is given and solved for the linear objective.  相似文献   

16.
The problem considered involves the assignment of n facilities to n specified locations. Each facility has a given nonnegative flow from each of the other facilities. The objective is to minimize the sum of transportation costs. Assume these n locations are given as points on a two-dimensional plane and transportation costs are proportional to weighted rectangular distances. Then the problem is formulated as a binary mixed integer program. The number of integer variables (all binary) involved equals the number of facilities squared. Without increasing the number of integer variables, the formulation is extended to include “site costs” Computational results of the formulation are presented.  相似文献   

17.
Various methods and criteria for comparing coherent systems are discussed. Theoretical results are derived for comparing systems of a given order when components are assumed to have independent and identically distributed lifetimes. All comparisons rely on the representation of a system's lifetime distribution as a function of the system's “signature,” that is, as a function of the vector p= (p1, … , pn), where pi is the probability that the system fails upon the occurrence of the ith component failure. Sufficient conditions are provided for the lifetime of one system to be larger than that of another system in three different senses: stochastic ordering, hazard rate ordering, and likelihood ratio ordering. Further, a new preservation theorem for hazard rate ordering is established. In the final section, the notion of system signature is used to examine a recently published conjecture regarding componentwise and systemwise redundancy. © 1999 John Wiley & Sons, Inc. Naval Research Logistics 46: 507–523, 1999  相似文献   

18.
We evaluate the effect of competition on prices, profits, and consumers' surplus in multiperiod, finite horizon, dynamic pricing settings. In our base model, a single myopic consumer visits two competing retailers, who offer identical goods, in a (first order Markovian) probabilistic fashion—if the posted price exceeds the consumer's valuation for the good, he returns to the same store in the following period with a certain probability. We find that even a small reduction in the return probability from one—which corresponds to the monopoly case at which prices decline linearly—is sufficient to revert the price decline from a linear into an exponential shape. Each retailer's profit is particularly sensitive to changes in his return probability when it is relatively high, and is maximized under complete loyalty behavior (i.e., return probability is one). On the other hand, consumer surplus is maximized under complete switching behavior (i.e., return probability is zero). In the presence of many similar consumers, the insights remain valid. We further focus on the extreme scenario where all consumers follow a complete switching behavior, to derive sharp bounds, and also consider the instance where, in this setting, myopic consumers are replaced with strategic consumers. © 2011 Wiley Periodicals, Inc. Naval Research Logistics, 2011  相似文献   

19.
A system is subject to shocks that arrive according to a nonhomogeneous Poisson process. As shocks occur a system has two types of failures. Type 1 failure (minor failure) is removed by a minimal repair, whereas type 2 failure (catastrophic failure) is removed by replacement. The probability of a type 2 failure is permitted to depend on the number of shocks since the last replacement. A system is replaced at the times of type 2 failure or at the nth type 1 failure, whichever comes first. The optimal policy is to select n* to minimize the expected cost per unit time for an infinite time span. A numerical example is given to illustrate the method. © 1996 John Wiley & Sons, Inc.  相似文献   

20.
This paper deals with a two‐person zero‐sum game called a search allocation game, where a searcher and a target participate, taking account of false contacts. The searcher distributes his search effort in a search space in order to detect the target. On the other hand, the target moves to avoid the searcher. As a payoff of the game, we take the cumulative amount of search effort weighted by the target distribution, which can be derived as an approximation of the detection probability of the target. The searcher's strategy is a plan of distributing search effort and the target's is a movement represented by a path or transition probability across the search space. In the search, there are false contacts caused by environmental noises, signal processing noises, or real objects resembling true targets. If they happen, the searcher must take some time for their investigation, which interrupts the search for a while. There have been few researches dealing with search games with false contacts. In this paper, we formulate the game into a mathematical programming problem to obtain its equilibrium point. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号