首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
This study investigates and quantifies some possible sources affecting the position of impact points of small caliber spin-stabilized projectiles (such as 12.7 mm bullets). A comparative experiment utilizing the control variable method was designed to figure out the influence of tiny eccentric centroids on the projectiles. The study critically analyzes data obtained from characteristic parameter measurements and precision trials. It also combines Sobol's algorithm with an artificial intelligence algorithm—Adaptive Neuro-Fuzzy Inference Systems (ANFIS)—in order to conduct global sensitivity analysis and determine which parameters were most influential. The results indicate that the impact points of projectiles with an entry angle of 0° deflected to the left to that of projectiles with an entry angle of 90°. The difference of the mean coordinates of impact points was about 12.61 cm at a target range of 200 m. Variance analysis indicated that the entry angle — i.e. the initial position of mass eccentricity — had a notable influence. After global sensitivity analysis, the significance of the effect of mass eccentricity was confirmed again and the most influential factors were determined to be the axial moment and transverse moment of inertia (Izz Iyy), the mass of a projectile (m), the distance between nose and center of mass along the symmetry axis for a projectile (Lm), and the eccentric distance of the centroid (Lr). The results imply that the control scheme by means of modifying mass center (moving mass or mass eccentricity) is promising for designing small-caliber spin-stabilized projectiles.  相似文献   

2.
The debris from exploded buildings can ricochet after colliding with the ground, thus increasing the debris travel distance and danger from any associated impacts or collisions. To reduce this danger, the travel distance of ricocheted debris must be accurately predicted. This study analyzed the change in the travel distance of ricocheted concrete debris relative to changes in the properties of a sand medium. Direct shear tests were conducted to measure the change in internal friction angle as a function of temperature and water content of the sand. Finite element analysis (FEA) was then applied to these variables to predict the speed and angle of the debris after ricochet. The FEA results were compared with results of low-speed ricochet experiments, which employed variable temperature and water content. The travel distance of the debris was calculated using MATLAB, via trajectory equations considering the drag coefficient. As the internal friction angle decreased, the shear stress decreased, leading to deeper penetration of the debris into the sand. As the loss of kinetic energy increased, the velocity and travel distance of the ricocheted debris decreased. Changes in the ricochet velocity and travel distance of the debris, according to changes in the internal friction angle, indicated that the debris was affected by the environment.  相似文献   

3.
The present study deals with development of conceptual proof for jute rubber basedflexible composite block to completely arrest the projectile impacting the target at high velocity impact of 400 m/s through numerical simulation approach using finite element (FE) method. The proposed flexible composite blocks of repeating jute/rubber/jute (JRJ) units are modelled with varying thickness from 30 mm to 120 mm in increments of 30 mm and impacted by flat (F), ogival (O) and hemispherical (HS) shaped projectiles. All the considered projectiles are impacted with proposed flexible composite blocks of different thicknesses and the penetration behaviour of the projectile in each case is studied. The penetration depth of the projectile in case of partially penetrated cases are considered and the effect of thickness and projectile shape on percentage of penetration depth is statistically analyzed using Tagu-chi's design of experiments (DOE). Results reveal that the though proposedflexible composite block with thickness of 90 mm is just sufficient to arrest the complete penetration of the projectile, considering the safety issues, it is recommended to use theflexible composite with thickness of 120 mm. The nature of damage caused by the projectile in the flexible composite is also studied. Statistical studies show that thickness of the block plays a prominent role in determining the damage resistance of the flexible composite.  相似文献   

4.
破甲弹侵彻装甲板的数值仿真   总被引:1,自引:0,他引:1  
装甲装备受到弹丸攻击后,要判断内部部件的毁伤情况,采用实弹试验的方法费用高,周期长,安全性差;而采用建模仿真的方法费用低,效率高,安全性好,并且可以为预测装备内部的毁伤部件奠定基础。采用有限元法对破甲弹侵彻均质装甲板进行了数值仿真,对侵彻过程的3个阶段进行了分析,得出了破甲弹射流的动能、平均速度和冲量随时间变化的规律,为侵彻后装甲板内部部件毁伤情况的判断提供了基础数据。  相似文献   

5.
Studies on ballistic penetration to laminates is complicated, but important for design effective protection of structures. Experimental means of study is expensive and can often be dangerous. Numerical simu-lation has been an excellent supplement, but the computation is time-consuming. Main aim of this thesis was to develop and test an effective tool for real-time prediction of projectile penetrations to laminates by training a neural network and a decision tree regression model. A large number of finite element models were developed;the residual velocities of projectiles fromfinite element simulations were used as the target data and processed to produce sufficient number of training samples. Study focused on steel 4340tpolyurea laminates with various configurations. Four different 3D shapes of the projectiles were modeled and used in the training. The trained neural network and decision tree model was tested using independently generated test samples using finite element models. The predicted projectile velocity values using the trained machine learning models are then compared with thefinite element simulation to verify the effectiveness of the models. Additionally, both models were trained using a published experimental data of projectile impacts to predict residual velocity of projectiles for the unseen samples. Performance of both the models was evaluated and compared. Models trained with Finite element simulation data samples were found capable to give more accurate predication, compared to the models trained with experimental data, becausefinite element modeling can generate much larger training set, and thus finite element solvers can serve as an excellent teacher. This study also showed that neural network model performs better with small experimental dataset compared to decision tree regression model.  相似文献   

6.
《防务技术》2020,16(1):201-207
Three different kinds of PELE (the penetrator with lateral efficiency) were launched by ballistic artillery to impact the multi-layer spaced metal target plates. The impact velocities of the projectiles were measured by the velocity measuring system. The damage degree and process of each layer of target plate impacted by the three kinds of projectiles were analyzed. The experimental results show that all the three kinds of projectiles have the effect of expanding holes on the multi-layer spaced metal target plates. For the normal structure PELE(without layered) with tungsten alloy jacket and the radial layered PELE with tungsten alloy jacket, the diameters of holes on the second layer of plates are 3.36 times and 3.76 times of the diameter of the projectile, respectively. For radial layered PELE with W/Zr-based amorphous composite jacket, due to the large number of tungsten wires dispersed after the impact, the diameter of the holes on the four-layer spaced plates can reach 2.4 times, 3.04 times, 5.36 times and 2.68 times of the diameter of the projectile. Besides, the normal structure PELE with tungsten alloy jacket and the radial layered PELE whit tungsten alloy jacket formed a large number of fragments impact marks on the third target plate. Although the number of fragments penetrating the third target plate is not as large as that of the normal structure PELE, the area of dispersion of fragments impact craters on the third target plate is larger by the radial layered PELE. The radial layered PELE with W/Zr-based amorphous composite jacket released a lot of heat energy due to the impact of the matrix material, and formed a large area of ablation marks on the last three target plates.  相似文献   

7.
加筋板架抗动能穿甲的等效防护厚度研究   总被引:1,自引:0,他引:1  
为研究舰船舷侧结构抗穿甲性能,采用有限元分析了两种典型工况下板架的穿甲破坏模式、弹体的剩余速度和板架的变形吸能规律,提出了基于剪切冲塞模式的剩余速度理论计算模型,比较了不同等效计算方法得到的结果,并将理论计算结果分别与相关文献的实验结果和本文的有限元计算结果进行了比较,两者之间均吻合较好。结果表明,加强筋对板架的抗穿甲性能影响较大,而板架的实际等效厚度是决定其抗穿甲性能的主要因素;不同的等效计算方法与模型相对尺寸、弹体冲击速度以及命中位置有关,对于弹体直径相对较大且初始冲击速度较高时,不同的等效计算方法得到的结果基本一致。  相似文献   

8.
长杆射弹对钢纤维混凝土靶开坑特性的实验研究   总被引:2,自引:2,他引:2       下载免费PDF全文
为考察射弹对钢纤维混凝土靶的侵彻特性,采用57mm轻气炮,进行了小尺寸模拟射弹对钢纤维混凝土靶(钢纤维的体积分数为2%)的侵彻实验。实验中观察了钢纤维混凝土靶的开坑形状,测量了射弹的击靶速度,并且采用注沙法测出靶体的开坑体积,计算出射弹对靶体的侵彻体积,得到了长杆射弹的动能与侵彻体积的关系。引入射弹单位面积的冲击动能和靶体单位侵彻体积的冲击动能,结合钢纤维混凝土靶的实验数据,考察了两者之间的关系。  相似文献   

9.
10.
设计并进行了7.62mm穿甲子弹侵彻陶瓷/低碳钢复合靶板的弹道试验,得到了极限速度及陶瓷锥底部半径等数据。分析了锥底半径与入射速度、面板及背板厚度的关系,着重分析了偏心入射时靶板的抗弹机理。结果表明:陶瓷锥可分为破碎区和粉碎区,粉碎区半径约为面板厚度与弹丸半径之和;当弹着点距离陶瓷面板边缘大于5mm时,靶板的抗弹性能变化不大,而弹着点位于距陶瓷面板边缘小于5mm的板边区时,抗弹性能明显降低,靶板的有效防护面积应扣除板边区。  相似文献   

11.
为了测量高旋弹丸在炮口处的各种信息,基于双高速摄像机交汇的测量方法,提出了一种新的弹丸位姿估计方法.对总攻角函数进行了误差建模与分析,结果表明两台高速摄像机的光轴应相互垂直,且应选择光轴远离攻角平面的高速摄像机所对应的测量函数计算总攻角,此时测量误差最小.以靶场实验的方式对攻角函数的误差分析结论和位姿估计算法进行验证....  相似文献   

12.
A new model has been defined that enables the estimation of the lethal radius (radius of efficiency) of HE (High Explosive) artillery projectiles against human targets. The model is made of several modules: CAD (Computer Aided Design) modeling, fragment mass distribution estimation, fragment initial velocity prediction, fragment trajectory calculation, effective fragment density estimation, and high explosive projectile lethal radius estimation. The results were compared with the experimental results obtained based on tests in the arena used in our country, and the agreement of the results was good. This model can be used in any terminal-ballistics scenario for high explosive projectiles since it is general, para-metric, fast and relatively easy to implement.  相似文献   

13.
在对某系列特种弹药的弹体结构尺寸分析和归类的基础上,详细阐述了弹体几何尺寸的测量原理,并结合工厂的实际,采用激光位移传感器和计算机自动控制技术,实现了弹体的关键尺寸的数字化测量与评价。实际应用表明该系统可以有效地提高弹体尺寸的测量精度并定量评价弹体的尺寸误差,内外径和同轴度的测量精度可达10μm以内,外长的测量精度可达100μm以内,能有效地指导加工的工艺流程和加工的尺寸精度控制。  相似文献   

14.
针对传统弹丸速度测量方法的局限,提出一种新的弹丸速度测试技术——数字化激光幕结合互相关速度测量算法的测试技术,并给出了激光总体测速方案、测速原理以及互相关测速方法,经靶场试验验证测试效果良好。  相似文献   

15.
《防务技术》2020,16(1):50-68
The interface defeat phenomenon always occurs when a long-rod projectile impacting on the ceramic target with certain velocity, i.e., the projectile is forced to flow radially on the surface of ceramic plates for a period of time without significant penetration. Interface defeat has a direct effect upon the ballistic performance of the armor piercing projectile, which is studied numerically and theoretically at present. Firstly, by modeling the projectiles and ceramic targets with the SPH (Smoothed Particle Hydrodynamics) particles and Lagrange finite elements, the systematic numerical simulations on interface defeat are performed with the commercial finite element program AUTODYN. Three different responses, i.e., complete interface defeat, dwell and direct penetration, are reproduced in different types of ceramic targets (bare, buffered, radially confined and oblique). Furthermore, by adopting the validated numerical algorithms, constitutive models and the corresponding material parameters, the influences of projectile (material, diameter, nose shape), constitutive models of ceramic (JH-1 and JH-2 models), buffer and cover plate (thickness, constraints, material), as well as the prestress acted on the target (radial and hydrostatic) on the interface defeat (transition velocity and dwell time) are systematically investigated. Finally, based on the energy conservation approach and taking the strain rate effect of ceramic material into account, a modified model for predicting the upper limit of transition velocity is proposed and validated. The present work and derived conclusions can provide helpful reference for the design and optimization of both the long-rod projectile and ceramic armor.  相似文献   

16.
《防务技术》2020,16(4):753-761
A hypersonic aerodynamics analysis of an electromagnetic gun (EM gun) launched projectile configuration is undertaken in order to ameliorate the basic aerodynamic characteristics in comparison with the regular projectile layout. Static margin and pendulum motion analysis models have been applied to evaluate the flight stability of a new airframe configuration. With a steady state computational fluid dynamics (CFD) simulation, the basic density, pressure and velocity contours of the EM gun projectile flow field at Mach number 5.0, 6.0 and 7.0 (angle of attack = 0°) have been analyzed. Furthermore, the static margin values are enhanced dramatically for the EM gun projectile with configuration optimization. Drag, lift and pitch property variations are all illustrated with the changes of Mach number and angle of attack. A particle ballistic calculation was completed for the pendulum analysis. The results show that the configuration optimized projectile, launched from the EM gun at Mach number 5.0 to 7.0, acts in a much more stable way than the projectiles with regular aerodynamic layout.  相似文献   

17.
为了研究运动参数和弹头外形对弹体斜入水过程的影响规律,采用气液两相流体积分数和水汽空化模型,通过嵌套网格实现刚体三自由度运动学和动力学耦合,模拟了弹体以80~100 m/s速度倾斜入水开空泡阶段的运动过程。经文献实验验证,入水弹体速度与位移的误差为0~6%和-8%~0,转动角度误差为-6%~0。通过对入水速度和入水角度的多工况模拟研究,发现入水速度增大,弹体轴向冲击载荷增大,最大载荷与速度的平方呈线性关系,弹体速度非线性衰减率大;入水角增大,弹体转动角速率减小,运动稳定性强,速度衰减率不受入水角影响。与圆锥头部弹体相比,采用头部阶梯状修型后的弹体的平均速度衰减率、转动角速率和最大轴向冲击载荷分别降低到66.7%、40%和77.2%,显著提高了运动稳定性。  相似文献   

18.
基于动态球形空腔膨胀理论给出的阻力函数理论公式和开坑阶段的表面层裂机理,建立了能够综合考虑弹头形状、开坑区深度的斜侵彻深度预测模型,并进一步推导了能够适用不同弹头形状的弹体过载时程曲线计算公式。预测模型得到的侵彻深度和过载与试验结果吻合较好。研究结果可为弹体与混凝土靶的斜侵彻弹道分析和弹丸头部设计提供一定帮助。  相似文献   

19.
5级同步感应线圈发射试验装置及控制系统研究   总被引:2,自引:0,他引:2  
基于同步感应线圈发射原理设计制作了5级电磁线圈发射试验装置,该装置采用光电传感器实时检测弹丸的位置,并将该位置信号反馈给控制系统触发双向可控硅闭合,使脉冲电容器对该级线圈放电。通过试验,给出了单级线圈的弹丸速度和触发位置的关系以及电压和级数对弹丸发射速度的影响。  相似文献   

20.
为探讨球头弹低速斜侵彻下靶板的破坏机理,通过系列弹道试验,对比分析了不同初始速度下弹体的变形,靶板的破坏模式,以及靶板的破口大小及形状;同时采用ANSYS/LS-DYNA对弹靶作用过程进行了数值模拟。结果表明:低速斜侵彻下靶板响应非完全对称,根据受力特征可将靶板划分为四个不同区域,即接触区,弯曲区,拉伸区和对称区;薄板的穿甲破坏可分为四个不同的阶段,即隆起变形,碟形变形,弯曲变形,弹体贯穿阶段;不同初始速度下靶板出现四种典型的穿甲破坏模式,随着初始速度的增加依次为隆起—碟形变形,隆起—碟形变形—拉弯撕裂破坏,隆起—碟形变形—拉弯剪切破坏,隆起—拉弯剪切破坏。斜侵彻下靶板破口形状为椭圆形,随着初始速度的增加,破口长径不断减小,形状由椭圆形向卵形过渡。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号