首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We consider open‐shop scheduling problems where operation‐processing times are a convex decreasing function of a common limited nonrenewable resource. The scheduler's objective is to determine the optimal job sequence on each machine and the optimal resource allocation for each operation in order to minimize the makespan. We prove that this problem is NP‐hard, but for the special case of the two‐machine problem we provide an efficient optimization algorithm. We also provide a fully polynomial approximation scheme for solving the preemptive case. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2006  相似文献   

2.
In the classical EPQ model with continuous and constant demand, holding and setup costs are minimized when the production rate is no larger than the demand rate. However, the situation may change when demand is lumpy. We consider a firm that produces multiple products, each having a unique lumpy demand pattern. The decision involves determining both the lot size for each product and the allocation of resources for production rate improvements among the products. We find that each product's optimal production policy will take on only one of two forms: either continuous production or lot‐for‐lot production. The problem is then formulated as a nonlinear nonsmooth knapsack problem among products determined to be candidates for resource allocation. A heuristic procedure is developed to determine allocation amounts. The procedure decomposes the problem into a mixed integer program and a nonlinear convex resource allocation problem. Numerical tests suggest that the heuristic performs very well on average compared to the optimal solution. Both the model and the heuristic procedure can be extended to allow the company to simultaneously alter both the production rates and the incoming demand lot sizes through quantity discounts. Extensions can also be made to address the case where a single investment increases the production rate of multiple products. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004.  相似文献   

3.
This paper presents an algorithm for solving the integer programming problem possessing a separable nonlinear objective function subject to linear constraints. The method is based on a generalization of the Balas implicit enumeration scheme. Computational experience is given for a set of seventeen linear and seventeen nonlinear test problems. The results indicate that the algorithm can solve the nonlinear integer programming problem in roughly the equivalent time required to solve the linear integer programming problem of similar size with existing algorithms. Although the algorithm is specifically designed to solve the nonlinear problem, the results indicate that the algorithm compares favorably with the Branch and Bound algorithm in the solution of linear integer programming problems.  相似文献   

4.
We introduce a generalized orienteering problem (OP) where, as usual, a vehicle is routed from a prescribed start node, through a directed network, to a prescribed destination node, collecting rewards at each node visited, to maximize the total reward along the path. In our generalization, transit on arcs in the network and reward collection at nodes both consume a variable amount of the same limited resource. We exploit this resource trade‐off through a specialized branch‐and‐bound algorithm that relies on partial path relaxation problems that often yield tight bounds and lead to substantial pruning in the enumeration tree. We present the smuggler search problem (SSP) as an important real‐world application of our generalized OP. Numerical results show that our algorithm applied to the SSP outperforms standard mixed‐integer nonlinear programming solvers for moderate to large problem instances. We demonstrate model enhancements that allow practitioners to represent realistic search planning scenarios by accounting for multiple heterogeneous searchers and complex smuggler motion. © 2013 Wiley Periodicals, Inc. Naval Research Logistics, 2013  相似文献   

5.
We consider a discrete time‐and‐space route‐optimization problem across a finite time horizon in which multiple searchers seek to detect one or more probabilistically moving targets. This article formulates a novel convex mixed‐integer nonlinear program for this problem that generalizes earlier models to situations with multiple targets, searcher deconfliction, and target‐ and location‐dependent search effectiveness. We present two solution approaches, one based on the cutting‐plane method and the other on linearization. These approaches result in the first practical exact algorithms for solving this important problem, which arises broadly in military, rescue, law enforcement, and border patrol operations. The cutting‐plane approach solves many realistically sized problem instances in a few minutes, while existing branch‐and‐bound algorithms fail. A specialized cut improves solution time by 50[percnt] in difficult problem instances. The approach based on linearization, which is applicable in important special cases, may further reduce solution time with one or two orders of magnitude. The solution time for the cutting‐plane approach tends to remain constant as the number of searchers grows. In part, then, we overcome the difficulty that earlier solution methods have with many searchers. © 2010 Wiley Periodicals, Inc. Naval Research Logistics, 2010  相似文献   

6.
We investigate a single‐machine scheduling problem for which both the job processing times and due windows are decision variables to be determined by the decision maker. The job processing times are controllable as a linear or convex function of the amount of a common continuously divisible resource allocated to the jobs, where the resource allocated to the jobs can be used in discrete or continuous quantities. We use the common flow allowances due window assignment method to assign due windows to the jobs. We consider two performance criteria: (i) the total weighted number of early and tardy jobs plus the weighted due window assignment cost, and (ii) the resource consumption cost. For each resource consumption function, the objective is to minimize the first criterion, while keeping the value of the second criterion no greater than a given limit. We analyze the computational complexity, devise pseudo‐polynomial dynamic programming solution algorithms, and provide fully polynomial‐time approximation schemes and an enhanced volume algorithm to find high‐quality solutions quickly for the considered problems. We conduct extensive numerical studies to assess the performance of the algorithms. The computational results show that the proposed algorithms are very efficient in finding optimal or near‐optimal solutions. © 2017 Wiley Periodicals, Inc. Naval Research Logistics, 64: 41–63, 2017  相似文献   

7.
The hyperbolic integer program is treated as a special case of a hyperbolic program with a finite number of feasible points. The continuous hyperbolic program also belongs to this class since its solution can be obtained by considering only the extreme points of the feasible set. A general algorithm for solving the hyperbolic integer program which reduces to solving a sequence of linear integer problems is proposed. When the integer restriction is removed, this algorithm is similar to the Isbell-Marlow procedure. The geometrical aspects of the hyperbolic problem are also discussed and several cutting plane algorithms are given.  相似文献   

8.
The integer programming literature contains many algorithms for solving all-integer programming problems but, in general, existing algorithms are less than satisfactory even in solving problems of modest size. In this paper we present a new technique for solving the all-integer, integer programming problem. This algorithm is a hybrid (i.e., primal-dual) cutting-plane method which alternates between a primal-feasible stage related to Young's simplified primal algorithm, and a dual-infeasible stage related to Gomory's dual all-integer algorithm. We present the results of computational testing.  相似文献   

9.
针对多波束干扰系统同时干扰多个目标的资源分配问题,通过分析目标分配算法的一般流程及涉及到的关键问题和技术难题,提出了基于实战化和有限条件的针对多波束干扰系统的非线性0-1整数规划数学模型。针对该模型采取开源软件SCIP进行求解,最后给出数值仿真来说明模型和算法的有效性。  相似文献   

10.
We study a stochastic scenario‐based facility location problem arising in situations when facilities must first be located, then activated in a particular scenario before they can be used to satisfy scenario demands. Unlike typical facility location problems, fixed charges arise in the initial location of the facilities, and then in the activation of located facilities. The first‐stage variables in our problem are the traditional binary facility‐location variables, whereas the second‐stage variables involve a mix of binary facility‐activation variables and continuous flow variables. Benders decomposition is not applicable for these problems due to the presence of the second‐stage integer activation variables. Instead, we derive cutting planes tailored to the problem under investigation from recourse solution data. These cutting planes are derived by solving a series of specialized shortest path problems based on a modified residual graph from the recourse solution, and are tighter than the general cuts established by Laporte and Louveaux for two‐stage binary programming problems. We demonstrate the computational efficacy of our approach on a variety of randomly generated test problems. © 2010 Wiley Periodicals, Inc. Naval Research Logistics, 2010  相似文献   

11.
Capacity planning decisions affect a significant portion of future revenue. In the semiconductor industry, they need to be made in the presence of both highly volatile demand and long capacity installation lead‐times. In contrast to traditional discrete‐time models, we present a continuous‐time stochastic programming model for multiple resource types and product families. We show how this approach can solve capacity planning problems of reasonable size and complexity with provable efficiency. This is achieved by an application of the divide‐and‐conquer algorithm, convexity, submodularity, and the open‐pit mining problem. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005.  相似文献   

12.
本文整数规划问题给出一种搜索方法,它类似于求解连续变量优化问题的迭代方法,从一个好的初始可行解出发,寻找一个搜索方向,沿着这个方向求出改进的可行解,然后又开始下一次迭代。此方法简单易行,可以求出问题的最优解或近似最优解,对于整数线性规划问题和整数非线性规划问题的求解都适用,并且容易推广到求解大规校整数线性规划问题。文中附有计算例子,说明方法是有效的。  相似文献   

13.
Design and management of complex systems with both integer and continuous decision variables can be guided using mixed‐integer optimization models and analysis. We propose a new mixed‐integer black‐box optimization (MIBO) method, subspace dynamic‐simplex linear interpolation search (SD‐SLIS), for decision making problems in which system performance can only be evaluated with a computer black‐box model. Through a sequence of gradient‐type local searches in subspaces of solution space, SD‐SLIS is particularly efficient for such MIBO problems with scaling issues. We discuss the convergence conditions and properties of SD‐SLIS algorithms for a class of MIBO problems. Under mild conditions, SD‐SLIS is proved to converge to a stationary solution asymptotically. We apply SD‐SLIS to six example problems including two MIBO problems associated with petroleum field development projects. The algorithm performance of SD‐SLIS is compared with that of a state‐of‐the‐art direct‐search method, NOMAD, and that of a full space simplex interpolation search, Full‐SLIS. The numerical results suggest that SD‐SLIS solves the example problems efficiently and outperforms the compared methods for most of the example cases. © 2017 Wiley Periodicals, Inc. Naval Research Logistics 64: 305–322, 2017  相似文献   

14.
In this paper, we consider a new weapon‐target allocation problem with the objective of minimizing the overall firing cost. The problem is formulated as a nonlinear integer programming model, but it can be transformed into a linear integer programming model. We present a branch‐and‐price algorithm for the problem employing the disaggregated formulation, which has exponentially many columns denoting the feasible allocations of weapon systems to each target. A greedy‐style heuristic is used to get some initial columns to start the column generation. A branching strategy compatible with the pricing problem is also proposed. Computational results using randomly generated data show this approach is promising for the targeting problem. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   

15.
The idea of deploying noncollocated sources and receivers in multistatic sonar networks (MSNs) has emerged as a promising area of opportunity in sonar systems. This article is one of the first to address point coverage problems in MSNs, where a number of points of interest have to be monitored in order to protect them from hostile underwater assets. We consider discrete “definite range” sensors as well as various diffuse sensor models. We make several new contributions. By showing that the convex hull spanned by the targets is guaranteed to contain optimal sensor positions, we are able to limit the solution space. Under a definite range sensor model, we are able to exclude even more suboptimal solutions. We then formulate a nonlinear program and an integer nonlinear program to express the sensor placement problem. To address the nonconvex single‐source placement problem, we develop the Divide Best Sector (DiBS) algorithm, which quickly provides an optimal source position assuming fixed receivers. Starting with a basic implementation of DiBS, we show how incorporating advanced sector splitting methods and termination conditions further improve the algorithm. We also discuss two ways to use DiBS to find multiple source positions by placing sensors iteratively or simultaneously. © 2017 Wiley Periodicals, Inc. Naval Research Logistics 64: 287–304, 2017  相似文献   

16.
The warehouse problem with deterministic production cost, selling prices, and demand was introduced in the 1950s and there is a renewed interest recently due to its applications in energy storage and arbitrage. In this paper, we consider two extensions of the warehouse problem and develop efficient computational algorithms for finding their optimal solutions. First, we consider a model where the firm can invest in capacity expansion projects for the warehouse while simultaneously making production and sales decisions in each period. We show that this problem can be solved with a computational complexity that is linear in the product of the length of the planning horizon and the number of capacity expansion projects. We then consider a problem in which the firm can invest to improve production cost efficiency while simultaneously making production and sales decisions in each period. The resulting optimization problem is non‐convex with integer decision variables. We show that, under some mild conditions on the cost data, the problem can be solved in linear computational time. © 2016 Wiley Periodicals, Inc. Naval Research Logistics 63: 367–373, 2016  相似文献   

17.
We address the problem of dispatching a vehicle with different product classes. There is a common dispatch cost, but holding costs that vary by product class. The problem exhibits multidimensional state, outcome and action spaces, and as a result is computationally intractable using either discrete dynamic programming methods, or even as a deterministic integer program. We prove a key structural property for the decision function, and exploit this property in the development of continuous value function approximations that form the basis of an approximate dispatch rule. Comparisons on single product‐class problems, where optimal solutions are available, demonstrate solutions that are within a few percent of optimal. The algorithm is then applied to a problem with 100 product classes, and comparisons against a carefully tuned myopic heuristic demonstrate significant improvements. © 2003 Wiley Periodicals, Inc. Naval Research Logistics 50: 742–769, 2003.  相似文献   

18.
We consider two opponents that compete in developing asymmetric technologies where each party's technology is aimed at damaging (or neutralizing) the other's technology. The situation we consider is different than the classical problem of commercial R&D races in two ways: First, while in commercial R&D races the competitors compete over the control of market share, in our case the competition is about the effectiveness of technologies with respect to certain capabilities. Second, in contrast with the “winner‐takes‐all” assumption that characterizes much of the literature on this field in the commercial world, we assume that the party that wins the race gains a temporary advantage that expires when the other party develops a superior technology. We formulate a variety of models that apply to a one‐sided situation, where one of the two parties has to determine how much to invest in developing a technology to counter another technology employed by the other party. The decision problems are expressed as (convex) nonlinear optimization problems. We present an application that provides some operational insights regarding optimal resource allocation. We also consider a two‐sided situation and develop a Nash equilibrium solution that sets investment values, so that both parties have no incentive to change their investments. © 2012 Wiley Periodicals, Inc. Naval Research Logistics 59: 128–145, 2012  相似文献   

19.
Having a robustly designed supply chain network is one of the most effective ways to hedge against network disruptions because contingency plans in the event of a disruption are often significantly limited. In this article, we study the facility reliability problem: how to design a reliable supply chain network in the presence of random facility disruptions with the option of hardening selected facilities. We consider a facility location problem incorporating two types of facilities, one that is unreliable and another that is reliable (which is not subject to disruption, but is more expensive). We formulate this as a mixed integer programming model and develop a Lagrangian Relaxation‐based solution algorithm. We derive structural properties of the problem and show that for some values of the disruption probability, the problem reduces to the classical uncapacitated fixed charge location problem. In addition, we show that the proposed solution algorithm is not only capable of solving large‐scale problems, but is also computationally effective. © 2009 Wiley Periodicals, Inc. Naval Research Logistics, 2010  相似文献   

20.
In this article, we describe a new algorithm for solving all-integer, integer programming problems. We generate upper bounds on the decision variables, and use these bounds to create an advanced starting point for a dual all-integer cutting plane algorithm. In addition, we use a constraint derived from the objective function to speed progress toward the optimal solution. Our basic vehicle is the dual all-integer algorithm of Gomory, but we incorporate certain row- and column-selection criteria which partially avoid the problem of dual-degenerate iterations. We present the results of computational testing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号