首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 918 毫秒
1.
This paper develops a mathematical theory for predicting force annihilation from initial conditions without explicitly computing force-level trajectories for deterministic Lanchester-type “square-law” áttrition equations for combat between two homogeneous forces with temporal variations in fire effectivenesses (as expressed by the Lanchester attrition-rate coefficients). It introduces a canonical auxiliary parity-condition problem for the determination of a single parity-condition parameter (“the enemy force equivalent of a friendly force of unit strength”) and new exponential-like general Lanchester functions. Prediction of force annihilation within a fixed finite time would involve the use of tabulations of the quotient of two Lanchester functions. These force-annihilation results provide further information on the mathematical properties of hyperbolic-like general Lanchester functions: in particular, the parity-condition parameter is related to the range of the quotient of two such hyperbolic-like general Lanchester functions. Different parity-condition parameter results and different new exponential-like general Lanchester functions arise from different mathematical forms for the attrition-rate coefficients. This theory is applied to general power attrition-rate coefficients: exact force-annihilation results are obtained when the so-called offset parameter is equal to zero; while upper and lower bounds for the parity-condition parameter are obtained when the offset parameter is positive.  相似文献   

2.
This paper studies combat between two homogeneous forces modelled with variable-coefficient Lanchester-type equations of modern warfare with supporting fires not subject to attrition. It shows that this linear differential-equation model for combat with supporting fires may be transformed into one without the supporting fires so that all the previous results for variable-coefficient Lanchester-type equations of modern warfare (without supporting fires) may be invoked. Consequently, new important results for representing the solution (i.e. force levels as functions of time) in terms of canonical Lanchester functions and also for predicting force annihilation are developed for this model with supporting fires. Important insights into the dynamics of combat between two homogeneous forces with such supporting fires are discussed.  相似文献   

3.
战役优势参数及其应用研究   总被引:7,自引:0,他引:7       下载免费PDF全文
数学分析方法在军事行动计划中扮演着越来越显著的角色。对以兰彻斯特作战模型为基础的描述诸兵种合成作战的矩阵微分方程,以及由方程的控制矩阵和状态变量初值,在不解方程的情况下导出的战役优势参数进行了研究;以空战为例讨论了预测战役结局、辅助军事决策、优化兵力部署和规划火力分配等战役优势参数的主要应用;给出了对战役优势参数和数学模型的评价。  相似文献   

4.
The optimization of the dynamics of combat (optimal distribution of fire over enemy target types) is studied through a sequence of idealized models by use of the mathematical theory of optimal control. The models are for combat over a period of time described by Lanchester-type equations with a choice of tactics available to one side and subject to change with time. The structure of optimal fire distribution policies is discussed with reference to the influence of combatant objectives, termination conditions of the conflict, type of attrition process, and variable attrition-rate coefficients. Implications for intelligence, command and control systems, and human decision making are pointed out. The use of such optimal control models for guiding extensions to differential games is discussed.  相似文献   

5.
This article analyzes versions of the salvo model of missile combat where area fire is used by one or both sides in a battle. Although these models share some properties with the area fire Lanchester model and the aimed fire salvo model, they also display some interesting differences, especially over the course of several salvos. Although the relative size of each force is important with aimed fire, with area fire, it is the absolute size that matters. Similarly, although aimed fire exhibits square law behavior, area fire shows approximately linear behavior. When one side uses area fire and the other uses aimed fire, the model displays a mix of square and linear law behavior. © 2013 Wiley Periodicals, Inc. Naval Research Logistics 60: 652–660, 2013  相似文献   

6.
We develop the solution to a simple problem of target selection in Lanchester combat against two enemy force types each of which undergoes a “linear-law” attrition process. In addition to the Pontryagin maximum principle, the theory of singular extremals is required to solve this problem. Our major contribution is to show how to synthesize the optimal target selection policies from the basic optimality conditions. This solution synthesis methodology is applicable to more general dynamic (tactical) allocation problems. For constant attrition-rate coefficients we show that whether or not changes can occur in target priorities depends solely on how survivors are valued and is independent of the type of attrition process.  相似文献   

7.
This article considers combat between two homogeneous forces modeled by variable- coefficient Lanchester-type equations of modern warfare and develops new “simple-approximate” battle-outcome-prediction conditions for military engagements terminated by two different types of prescribed conditions being met (fixed-force-level-breakpoint battles and fixed-force-ratio-breakpoint battles). These battle-outcome-prediction conditions are sufficient (but not necessary) to determine the outcome of battle without having to explicitly compute the force-level trajectories, and they are characterized by their simplicity, requiring no advanced mathematical knowledge or tabulations of “special functions” for their application. Integrability properties of the Lanchester attrition-rate coefficients figure prominently in their results, and involved in their development is a generalization of Lanchester's famous square law to variable-coefficient Lanchester-type combat and several other novel mathematical developments for the analysis of ordinary differential equations. Examples are given, with the attack of a mobile force against a static defensive position (both sides armed with weapons whose firepower is range dependent) being examined in detail.  相似文献   

8.
It is proposed to describe multiple air-to-air combat having a moderate number of participants with the aid of a stochastic process based on end-game duels. A simple model describing the dominant features of air combat leads to a continuous time discrete-state Markov process. Solution of the forward Kolmogorov equations enables one to investigate the influence of initial force levels and performance parameters on the outcome probabilities of the multiple engagement. As is illustrated, such results may be useful in the decision-making process for aircraft and weapon system development planning. Some comparisons are made with Lanchester models as well as with a semi-Markov model.  相似文献   

9.
一种基于随机映射的战斗效能模型   总被引:5,自引:1,他引:4       下载免费PDF全文
利用随机映射概念提出了一种新的战斗毁伤模型形式———Lanchester战斗网络模型。模型是由一个阶递减的随机映射序列组成的随机有向二部图,它明确、形式地描述了战争整体行为与局部作用之间的关系。理论分析和计算获得的结论表明,模型描述的整体作战效能符合Lanchester平方律,其网络拓扑结构是非同质的,出度和入度分布服从指数幂律。应用模型定量对比了“对称”与“非对称”战斗中全局信息因素对战斗系统整体效能的影响。初步讨论了网络模型研究在战争建模理论、实证和计算方法论上的意义。  相似文献   

10.
This paper studies Lanchester-type combat between two homogeneous forces modeled by the so-called general linear model with continuous replacements/withdrawals. It demonstrates that this model can be transformed into a simpler canonical form, which is also shown to arise from fixed-force-level-breakpoint battles modeled by Lanchester-type equations for modern warfare. Analytical expressions for the force levels for the general variable coefficient linear model with continuous replacements/withdrawals are constructed out of so-called general Lanchester functions for the model without replacements/withdrawals, for which all solutions are shown to be nonoscillatory in the strict sense. These force-level results are unfortunately so complicated and opaque that the constant-coefficient version of the model must be studied before any insights into the dynamics of combat may be analytically obtained. Thus, fairly complete results are given for the general linear model with constant attrition-rate coefficients and constant rates of replacement/withdrawal. However, the expressions for the force levels are still so complicated that we have not been able to develop battle-outcome prediction conditions directly from them alone but have had to establish general results on the qualitative behavior of solutions. A significant result (and one that greatly complicates the prediction of battle outcome) is that all solutions to the model with replacements/withdrawals are no longer necessarily nonoscillatory in the strict sense, i.e., both sides force levels can take on negative values if the force-on-force attrition equations are not “turned off” at the right time. Thus, this paper shows that the addition of continuous replacements/withdrawals to a Lanchester-type model may significantly change the qualitative behavior of the force-level trajectories. Battle-outcome prediction conditions are nevertheless given, and important insights into the dynamics of combat are briefly indicated.  相似文献   

11.
基于非线性兰彻斯特方程的一般形式和现代战争的特点,考虑到时间因素在现代战争中的巨大作用,建立并讨论了一类带时滞的非线性兰彻斯特战斗模型。通过定性分析,得到了模型的平衡点及其稳定性,证明了原模型解的存在唯一性,并给出了解的存在区域。战例分析结果表明该模型能用来描述现代战争。因此,该模型对研究现代战争的战斗进程、武器发展规划、现代军事练兵等都具有一定的参考价值。  相似文献   

12.
对导弹作战体系作战能力评估问题进行了建模与仿真研究。分析了导弹作战体系的基本构成,建立了基于指数法和兰彻斯特战斗方程的导弹作战体系作战能力评估模型;仿真分析了发现和预警概率、指挥控制系统作战能力对导弹作战体系作战能力的影响,得到了一些有价值的数值仿真结论。  相似文献   

13.
导弹作战体系作战能力评估方法研究*   总被引:3,自引:0,他引:3  
对导弹作战体系作战能力评估问题进行了建模与仿真研究.分析了导弹作战体系的基本构成,建立了基于指数法和兰彻斯特战斗方程的导弹作战体系作战能力评估模型;仿真分析了发现和预警概率、指挥控制系统作战能力对导弹作战体系作战能力的影响,得到了一些有价值的数值仿真结论.  相似文献   

14.
坦克连火力分配方案的科学与否将直接关系到火力打击的整体效果。为了提高坦克连火力分配方案的科学合理性,力求结合我坦克连作战的实际,在充分考虑火力分配影响因素的基础上,建立了最优火力分配模型,这对于我坦克连充分发扬火力和提高整体作战能力具有重要的指导意义。  相似文献   

15.
The article develops a theorem which shows that the Lanchester linear war equations are not in general equal to the Kolmogorov linear war equations. The latter are time‐consuming to solve, and speed is important when a large number of simulations must be run to examine a large parameter space. Run times are provided, where time is a scarce factor in warfare. Four time efficient approximations are presented in the form of ordinary differential equations for the expected sizes and variances of each group, and the covariance, accounting for reinforcement and withdrawal of forces. The approximations are compared with “exact” Monte Carlo simulations and empirics from the WWII Ardennes campaign. The band spanned out by plus versus minus the incremented standard deviations captures some of the scatter in the empirics, but not all. With stochastically varying combat effectiveness coefficients, a substantial part of the scatter in the empirics is contained. The model is used to forecast possible futures. The implications of increasing the combat effectiveness coefficient governing the size of the Allied force, and injecting reinforcement to the German force during the Campaign, are evaluated, with variance assessments. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005.  相似文献   

16.
Optimal time-sequential fire-support strategies are studied through a two-person zero-sum deterministic differential game with closed-loop (or feedback) strategies. Lanchester-type equations of warfare are used in this work. In addition to the max-min principle, the theory of singular extremals is required to solve this prescribed-duration combat problem. The combat is between two heterogeneous forces, each composed of infantry and a supporting weapon system (artillery). In contrast to previous work reported in the literature, the attrition structure of the problem at hand leads to force-level-dependent optimal fire-support strategies with the attacker's optimal fire-support strategy requiring him to sometimes split his artillery fire between enemy infantry and artillery (counterbattery fire). A solution phenomnon not previously encountered in Lanchester-type differential games is that the adjoint variables may be discontinuous across a manifold of discontinuity for both players' strategies. This makes the synthesis of optimal strategies particularly difficult. Numerical examples are given.  相似文献   

17.
The treatment of force-level constraints in time-sequential combat optimization problems is illustrated by further studying the fire-programming problem of Isbell and Marlow. By using the theory of state variable inequality constraints from modern optimal control theory, sharper results are obtained on necessary conditions of optimality for an optimal fire-distribution policy (in several cases justifying conjectures made in previous analysis). This leads to simplification of the determination of the domains of controllability for extremals leading to the various terminal states of combat. (Additionally, some new results for the determination of boundary conditions for the adjoint variables in optimal control problems with state variable inequality constraints have arisen from this work.) Some further extensions of previous analysis of the fire-programming problem are also given. These clarify some key points in the solution synthesis. Some important military principles for target selection and the valuation of combat resources are deduced from the solution. As a result of this work, more general time-sequential combat optimization problems can be handled, and a more systematic solution procedure is developed.  相似文献   

18.
为了解决防空火力分配问题,首先运用NSGA-II算法求出Pareto最优解集,然后运用多属性决策方法对Pareto最优解集中的解进行综合评估,并从中找出一个最优解。用区间数定性描述各属性,建立了防空火力分配的三目标优化模型。描述了NSGA-II算法和多属性决策方法的运算步骤。在仿真算例中,得到了一个最佳防空火力分配方案,说明该方法对于防空火力分配问题有良好的应用价值。  相似文献   

19.
This paper develops new “simple” victory-prediction conditions for a linear Lanchester-type model of combat between two homogeneous forces with superimposed effects of supporting fires not subject to attrition. These simple victory-prediction conditions involve only the initial conditions of battle and certain assumptions about the nature of temporal variations in the attrition-rate coefficients. They are developed for a fixed-force-ratio-breakpoint battle by studying the force-ratio equation for the linear combat model. An important consideration is shown to be required for developing such simple victory-prediction conditions: victory is not guaranteed in a fixed-force-ratio-breakpoint battle even when the force ratio is always changing to the advantage of one of the combatants. One must specify additional conditions to hold for the cumulative fire effectivenesses of the primary weapon systems in order to develop correct victory-prediction conditions. The inadequacy of previous victory-prediction results is explained by examining (for the linear combat model without the supporting fires) new “exact” victory-prediction conditions, which show that even the range of possible battle outcomes may be significantly different for variable-coefficient and constant-coefficients models.  相似文献   

20.
A complete solution is derived to the Isbell and Marlow fire programming problem. The original work of Isbell and Marlow has been extended by determining the regions of the initial state space from which optimal paths lead to each of the terminal states of combat. The solution process has involved determining the domain of controllability for each of the terminal states of combat and the determination of dispersal surfaces. This solution process suggests a solution procedure applicable to a wider class of tactical allocation problems, terminal control attrition differential games. The structure of optimal target engagement policies in “fights to the finish” is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号