首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper investigates a new procedure for solving the general-variable pure integer linear programming problem. A simple transformation converts the problem to one of constructing nonnegative integer solutions to a system of linear diophantine equations. Rubin's sequential algorithm, an extension of the classic Euclidean algorithm, is used to find an integer solution to this system of equations. Two new theorems are proved on the properties of integer solutions to linear systems. This permits a modified Fourier-Motzkin elimination method to be used to construct a nonnegative integer solution. An experimental computer code was developed for the algorithm to solve some test problems selected from the literature. The computational results, though limited, are encouraging when compared with the Gomory all-integer algorithm.  相似文献   

2.
In this article, we describe a new algorithm for solving all-integer, integer programming problems. We generate upper bounds on the decision variables, and use these bounds to create an advanced starting point for a dual all-integer cutting plane algorithm. In addition, we use a constraint derived from the objective function to speed progress toward the optimal solution. Our basic vehicle is the dual all-integer algorithm of Gomory, but we incorporate certain row- and column-selection criteria which partially avoid the problem of dual-degenerate iterations. We present the results of computational testing.  相似文献   

3.
An exact method for solving all-integer linear-programming problems is presented. Dynamic-programming methodology is used to search efficiently candidate hyperplanes for the optimal feasible integer solution. The explosive storage requirements for high-dimensional dynamic programming are avoided by the development of an analytic representation of the optimal allocation at each stage. Computational results for problems of small to moderate size are also presented.  相似文献   

4.
The problem of finding minimal disconnecting sets for multi-commodity directed networks may be solved using an arc-path formulation and Gomory's all-integer integer programming algorithm. However, the number of network constraints may be astronomical for even moderately sized networks. This paper develops a finite algorithm similar to Gomory's, but requiring no more than m rows in the tableau, where m is the number of arcs in the network.  相似文献   

5.
A cutting plane method for solving concave minimization problems with linear constraints has been advanced by Tui. The principle behind this cutting plane has been applied to integer programming by Balas, Young, Glover, and others under the name of convexity cuts. This paper relates the question of finiteness of Tui's method to the so-called generalized lattice point problem of mathematical programming and gives a sufficient condition for terminating Tui's method. The paper then presents several branch-and-bound algorithms for solving concave minimization problems with linear constraints with the Tui cut as the basis for the algorithm. Finally, some computational experience is reported for the fixed-charge transportation problem.  相似文献   

6.
This paper presents an algorithm for solving the integer programming problem possessing a separable nonlinear objective function subject to linear constraints. The method is based on a generalization of the Balas implicit enumeration scheme. Computational experience is given for a set of seventeen linear and seventeen nonlinear test problems. The results indicate that the algorithm can solve the nonlinear integer programming problem in roughly the equivalent time required to solve the linear integer programming problem of similar size with existing algorithms. Although the algorithm is specifically designed to solve the nonlinear problem, the results indicate that the algorithm compares favorably with the Branch and Bound algorithm in the solution of linear integer programming problems.  相似文献   

7.
In an earlier paper [1] we put forth a framework that helps to tie together a number of approaches for solving integer programming problems. We outlined there how Balas' Additive Algorithm can be explained and generalized in terms of the framework. In the present paper we review Balas' algorithm, and our earlier framework, and present an algorithm generalizing Balas' scheme. In addition, some examples are presented and future research to be done is discussed.  相似文献   

8.
Glover and Young, References [4] and [8], respectively, present convergent primal integer programming algorithms. The algorithm outlined in Young's paper (which was deliberately specialized) is shown to be a special case of the Glover algorithm under his acceptable source row selection, Rule 1.  相似文献   

9.
We present an algorithm for solving a specially structured nonlinear integer resource allocation problem. This problem was motivated by a capacity planning study done at a large Health Maintenance Organization in Texas. Specifically, we focus on a class of nonlinear resource allocation problems that involve the minimization of a convex function over one general convex constraint, a set of block diagonal convex constraints, and bounds on the integer variables. The continuous variable problem is also considered. The continuous problem is solved by taking advantage of the structure of the Karush‐Kuhn‐Tucker (KKT) conditions. This method for solving the continuous problem is then incorporated in a branch and bound algorithm to solve the integer problem. Various reoptimization results, multiplier bounding results, and heuristics are used to improve the efficiency of the algorithms. We show how the algorithms can be extended to obtain a globally optimal solution to the nonconvex version of the problem. We further show that the methods can be applied to problems in production planning and financial optimization. Extensive computational testing of the algorithms is reported for a variety of applications on continuous problems with up to 1,000,000 variables and integer problems with up to 1000 variables. © 2003 Wiley Periodicals, Inc. Naval Research Logistics 50: 770–792, 2003.  相似文献   

10.
Recent efforts in the field of dynamic programming have explored the feasibility of solving certain classes of integer programming problems by recursive algorithms. Special recursive algorithms have been shown to be particularly effective for problems possessing a 0–1 attribute matrix displaying the “nesting property” studied by, Ignall and Veinott in inventory theory and by Glover in network flows. This paper extends the class of problem structures that has been shown amenable to recursive exploitation by providing an efficient dynamic programming approach for a general transportation scheduling problem. In particular, we provide alternative formulations lor the scheduling problem and show how the most general of these formulations can be readily solved vis a vis recursive techniques.  相似文献   

11.
The hyperbolic integer program is treated as a special case of a hyperbolic program with a finite number of feasible points. The continuous hyperbolic program also belongs to this class since its solution can be obtained by considering only the extreme points of the feasible set. A general algorithm for solving the hyperbolic integer program which reduces to solving a sequence of linear integer problems is proposed. When the integer restriction is removed, this algorithm is similar to the Isbell-Marlow procedure. The geometrical aspects of the hyperbolic problem are also discussed and several cutting plane algorithms are given.  相似文献   

12.
本文整数规划问题给出一种搜索方法,它类似于求解连续变量优化问题的迭代方法,从一个好的初始可行解出发,寻找一个搜索方向,沿着这个方向求出改进的可行解,然后又开始下一次迭代。此方法简单易行,可以求出问题的最优解或近似最优解,对于整数线性规划问题和整数非线性规划问题的求解都适用,并且容易推广到求解大规校整数线性规划问题。文中附有计算例子,说明方法是有效的。  相似文献   

13.
针对多波束干扰系统同时干扰多个目标的资源分配问题,通过分析目标分配算法的一般流程及涉及到的关键问题和技术难题,提出了基于实战化和有限条件的针对多波束干扰系统的非线性0-1整数规划数学模型。针对该模型采取开源软件SCIP进行求解,最后给出数值仿真来说明模型和算法的有效性。  相似文献   

14.
多目标广义指派问题的模糊匈牙利算法求解   总被引:5,自引:0,他引:5  
提出和讨论了两类多目标的广义指派决策问题,分别给出了它们的多目标整数线性规划数学模型,并结合模糊理论与解决传统指派问题的匈牙利方法提出了一种新的求解算法:模糊匈牙利法.最后给出了一个数值例子.  相似文献   

15.
The procedures for postoptimality analysis that are so much a part of linear programming studies have no simple counterparts in an integer programming context. In the case of Balas' Additive Algorithm, however, it would appear that the capacity of the technique to facilitate certain types of postoptimality analysis has not been fully exploited. This paper proposes an extension of the additive algorithm that utilizes insights generated while solving the original problem to do subsequent analysis upon it. In particular, procedures are developed for doing limited parameter ranging and for seeking new optima in light of parameter changes.  相似文献   

16.
借鉴两阶段法的求解思路,在用单纯形法求解线性规划问题时,对大M法进行改进,提出一种新的算法.这种改进后的算法可以有效克服原来两种算法的不足,既能降低理解难度,又能提高算法的效率,保证算法的全局收敛性.  相似文献   

17.
This paper discusses a mixed integer programming method for solving the Facilities Location Problem with capacities on the facilities. The algorithm uses a Decomposition technique to solve the dual of the associated continuous problem in each branch-bound iteration. The method was designed to produce the global optimum solution for problems with up to 100 facilities and 1,000 customers. Computational experience and a complete example are also presented in the appendix.  相似文献   

18.
Although there has been extensive research on interactive multiple objective decision making in the last two decades, there is still a need for specialized interactive algorithms that exploit the relatively simple structure of bicriterion programming problems. This article develops an interactive branch-and-bound algorithm for bicriterion nonconvex programming problems. The algorithm searches among only the set of nondominated solutions since one of them is a most preferred solution that maximizes the overall value function of the decision maker over the set of achievable solutions. The interactive branch-and-bound algorithm requires only pairwise preference comparisons from the decision maker. Based on the decision maker's responses, the algorithm reduces the set of nondominated solutions and terminates with his most preferred nondominated solution. Branching corresponds to dividing the subset of nondominated solutions considered at a node into two subsets. The incumbent solution is updated based on the preference of the decision maker between two nondominated solutions. Fathoming decisions are based on the decision maker's preference between the incumbent solution and the ideal solution of the node in consideration.  相似文献   

19.
In this study we present an integer programming model for determining an optimal inbound consolidation strategy for a purchasing manager who receives items from several suppliers. The model considers multiple suppliers with limited capacity, transportation economies, and quantity discounts. We propose an integrated branch and bound procedure for solving the model. This procedure, applied to a Lagrangean dual at every node of the search tree, combines the subgradient method with a primal heuristic that interact to change the Lagrangean multipliers and tighten the upper and lower bounds. An enhancement to the branch and bound procedure is developed using surrogate constraints, which is found to be beneficial for solving large problems. We report computational results for a variety of problems, with as many as 70,200 variables and 3665 constraints. Computational testing indicates that our procedure is significantly faster than the general purpose integer programming code OSL. A regression analysis is performed to determine the most significant parameters of our model. © 1998 John Wiley & Sons, Inc. Naval Research Logistics 45: 579–598, 1998  相似文献   

20.
A descent algorithm simultaneously capable of solving linear programming, piecewise linear convex minimization, and the linear complementarity problem is developed. Conditions are given under which a solution can be found in a finite number of iterations using the geometry of the problem. A computer algorithm is developed and test problems are solved by both this method and Lemke's algorithm. Current results indicate a decrease in the number of cells visited but an increase in the total number of pivots needed to solve the problem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号