首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper presents an algorithm for solving the integer programming problem possessing a separable nonlinear objective function subject to linear constraints. The method is based on a generalization of the Balas implicit enumeration scheme. Computational experience is given for a set of seventeen linear and seventeen nonlinear test problems. The results indicate that the algorithm can solve the nonlinear integer programming problem in roughly the equivalent time required to solve the linear integer programming problem of similar size with existing algorithms. Although the algorithm is specifically designed to solve the nonlinear problem, the results indicate that the algorithm compares favorably with the Branch and Bound algorithm in the solution of linear integer programming problems.  相似文献   

2.
本文给出求解整数线性规划问题的一个算法。基本思想是通过求出其伴随线性规划问题的最优单纯形表,把整数线性规划化成正整数系数的不定方程,然后从不定方程的非负整数解集中选取一组满足整数线性规划的约束条件的解,作为整数线性规划的最优解。  相似文献   

3.
In this paper we present a new formulation of the quadratic assignment problem. This is done by transforming the quadratic objective function into a linear objective function by introducing a number of new variables and constraints. The resulting problem is a 0-1 linear integer program with a highly specialized structure. This permits the use of the partitioning scheme of Benders where only the original variables need be considered. The algorithm described thus iterates between two problems. The master problem is a pure 0-1 integer program, and the subproblem is a transportation problem whose optimal solution is shown to be readily available from the master problem in closed form. Computational experience on problems available in the literature is provided.  相似文献   

4.
This article shows how simple systems of linear equations with {0,1} variables can be aggregated into a single linear equation whose {0,1} solutions are identical to the solutions of the original system. Structures of the original systems are exploited to keep the aggregator's integer coefficients from becoming unnecessarily large. The results have potential application in integer programming and information theory, especially for problems that contain assignment-type constraints along with other constraints. Several unresolved questions of a number-theoretic nature are mentioned at the conclusion of the article.  相似文献   

5.
A set of edges D called an isolation set, is said to isolate a set of nodes R from an undirected network if every chain between the nodes in R contains at least one edge from the set D. Associated with each edge of the network is a positive cost. The isolation problem is concerned with finding an isolation set such that the sum of its edge costs is a minimum. This paper formulates the problem of determining the minimal cost isolation as a 0–1 integer linear programming problem. An algorithm is presented which applies a branch and bound enumerative scheme to a decomposed linear program whose dual subproblems are minimal cost network flow problems. Computational results are given. The problem is also formulated as a special quadratic assignment problem and an algorithm is presented that finds a local optimal solution. This local solution is used for an initial bound.  相似文献   

6.
This paper describes a node covering algorithm, i.e., a procedure for finding a smallest set of nodes covering all edges of an arbitrary graph. The algorithm is based on the concept of a dual node-clique set, which allows us to identify partial covers associated with integer dual feasible solutions to the linear programming equivalent of the node covering problem. An initial partial cover with the above property is first found by a labeling procedure. Another labeling procedure then successively modifies the dual node-clique set, so that more and more edges are covered, i.e., the (primal) infeasibility of the solution is gradually reduced, while integrality and dual feasibility are preserved. When this cannot be continued, the problem is partitioned and the procedure applied to the resulting subproblems. While the steps of the algorithm correspond to sequences of dual simplex pivots, these are carried out implicitly, by labeling. The procedure is illustrated by examples, and some early computational experience is reported. We conclude with a discussion of potential improvements and extensions.  相似文献   

7.
Three methods are used to solve the following problem: For P, a positive constant, maximize (P. Reliability-cost) of a system with standby redundancy. The results show that a method which rounds a noninteger solution to the nearest integer solution can lead to tremendous mistakes. However, neither a well known dynamic programming algorithm nor a previously developed branch and bound technique are able to solve large size problems. The solution of problems of large dimension thus requires the use of the noninteger solution of the first method to limit the number of possible solutions when using either the dynamic programming algorithm or a modified branch and bound technique. With this assistance, the branch and bound technique is able to solve large problems in a short amount of computational time.  相似文献   

8.
The hyperbolic integer program is treated as a special case of a hyperbolic program with a finite number of feasible points. The continuous hyperbolic program also belongs to this class since its solution can be obtained by considering only the extreme points of the feasible set. A general algorithm for solving the hyperbolic integer program which reduces to solving a sequence of linear integer problems is proposed. When the integer restriction is removed, this algorithm is similar to the Isbell-Marlow procedure. The geometrical aspects of the hyperbolic problem are also discussed and several cutting plane algorithms are given.  相似文献   

9.
Let be a basic solution to the linear programming problem subject to: where R is the index set associated with the nonbasic variables. If all of the variables are constrained to be nonnegative integers and xu is not an integer in the basic solution, the linear constraint is implied. We prove that including these “cuts” in a specified way yields a finite dual simplex algorithm for the pure integer programming problem. The relation of these modified Dantzig cuts to Gomory cuts is discussed.  相似文献   

10.
A mean-variance portfolio selection model with limited diversification is formulated in which transaction and management costs are incorporated as the sum of a linear cost and a fixed cost. The problem is a fixed charge integer programming problem solved by hypersurface search using dynamic programming. Fathoming is performed in the forward pass of dynamic programming so that values of the state variable which correspond to infeasible solutions are eliminated from the tables. This logic permits the solution of problems with 20–30 possible investments.  相似文献   

11.
We present an algorithm for solving a specially structured nonlinear integer resource allocation problem. This problem was motivated by a capacity planning study done at a large Health Maintenance Organization in Texas. Specifically, we focus on a class of nonlinear resource allocation problems that involve the minimization of a convex function over one general convex constraint, a set of block diagonal convex constraints, and bounds on the integer variables. The continuous variable problem is also considered. The continuous problem is solved by taking advantage of the structure of the Karush‐Kuhn‐Tucker (KKT) conditions. This method for solving the continuous problem is then incorporated in a branch and bound algorithm to solve the integer problem. Various reoptimization results, multiplier bounding results, and heuristics are used to improve the efficiency of the algorithms. We show how the algorithms can be extended to obtain a globally optimal solution to the nonconvex version of the problem. We further show that the methods can be applied to problems in production planning and financial optimization. Extensive computational testing of the algorithms is reported for a variety of applications on continuous problems with up to 1,000,000 variables and integer problems with up to 1000 variables. © 2003 Wiley Periodicals, Inc. Naval Research Logistics 50: 770–792, 2003.  相似文献   

12.
An algorithm is presented by which the set of all efficient solutions for a linear multiple-objective transportation problem can be enumerated. First the algorithm determines an initial efficient basic solution. In a second step all efficient basic solutions are enumerated. Finally, the set of all efficient solutions is constructed as a union of a minimal number of convex sets of efficient solutions. The algorithm is illustrated by a numerical example.  相似文献   

13.
In this article, we introduce the capacitated warehouse location model with risk pooling (CLMRP), which captures the interdependence between capacity issues and the inventory management at the warehouses. The CLMRP models a logistics system in which a single plant ships one type of product to a set of retailers, each with an uncertain demand. Warehouses serve as the direct intermediary between the plant and the retailers for the shipment of the product and also retain safety stock to provide appropriate service levels to the retailers. The CLMRP minimizes the sum of the fixed facility location, transportation, and inventory carrying costs. The model simultaneously determines warehouse locations, shipment sizes from the plant to the warehouses, the working inventory, and safety stock levels at the warehouses and the assignment of retailers to the warehouses. The costs at each warehouse exhibit initially economies of scale and then an exponential increase due to the capacity limitations. We show that this problem can be formulated as a nonlinear integer program in which the objective function is neither concave nor convex. A Lagrangian relaxation solution algorithm is proposed. The Lagrangian subproblem is also a nonlinear integer program. An efficient algorithm is developed for the linear relaxation of this subproblem. The Lagrangian relaxation algorithm provides near‐optimal solutions with reasonable computational requirements for large problem instances. © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   

14.
We consider the problem of scheduling customer orders in a flow shop with the objective of minimizing the sum of tardiness, earliness (finished goods inventory holding), and intermediate (work‐in‐process) inventory holding costs. We formulate this problem as an integer program, and based on approximate solutions to two different, but closely related, Dantzig‐Wolfe reformulations, we develop heuristics to minimize the total cost. We exploit the duality between Dantzig‐Wolfe reformulation and Lagrangian relaxation to enhance our heuristics. This combined approach enables us to develop two different lower bounds on the optimal integer solution, together with intuitive approaches for obtaining near‐optimal feasible integer solutions. To the best of our knowledge, this is the first paper that applies column generation to a scheduling problem with different types of strongly ????‐hard pricing problems which are solved heuristically. The computational study demonstrates that our algorithms have a significant speed advantage over alternate methods, yield good lower bounds, and generate near‐optimal feasible integer solutions for problem instances with many machines and a realistically large number of jobs. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004.  相似文献   

15.
The procedures for postoptimality analysis that are so much a part of linear programming studies have no simple counterparts in an integer programming context. In the case of Balas' Additive Algorithm, however, it would appear that the capacity of the technique to facilitate certain types of postoptimality analysis has not been fully exploited. This paper proposes an extension of the additive algorithm that utilizes insights generated while solving the original problem to do subsequent analysis upon it. In particular, procedures are developed for doing limited parameter ranging and for seeking new optima in light of parameter changes.  相似文献   

16.
We consider a ship stowage planning problem where steel coils with known destination ports are to be loaded onto a ship. The coils are to be stowed on the ship in rows. Due to their heavy weight and cylindrical shape, coils can be stowed in at most two levels. Different from stowage problems in previous studies, in this problem there are no fixed positions on the ship for the coils due to their different sizes. At a destination port, if a coil to be unloaded is not at a top position, those blocking it need to be shuffled. In addition, the stability of ship has to be maintained after unloading at each destination port. The objective for the stowage planning problem is to minimize a combination of ship instability throughout the entire voyage, the shuffles needed for unloading at the destination ports, and the dispersion of coils to be unloaded at the same destination port. We formulate the problem as a novel mixed integer linear programming model. Several valid inequalities are derived to help reducing solution time. A tabu search (TS) algorithm is developed for the problem with the initial solution generated using a construction heuristic. To evaluate the proposed TS algorithm, numerical experiments are carried out on problem instances of three different scales by comparing it with a model‐based decomposition heuristic, the classic TS algorithm, the particle swarm optimization algorithm, and the manual method used in practice. The results show that for small problems, the proposed algorithm can generate optimal solutions. For medium and large practical problems, the proposed algorithm outperforms other methods. © 2015 Wiley Periodicals, Inc. Naval Research Logistics 62: 564–581, 2015  相似文献   

17.
求最大数目不相交多约束QoS路由的一种新方法   总被引:1,自引:0,他引:1  
针对多约束QoS路由问题中从资源点到目的点的最大数目的不相交路由,文章给出了一种基于罚函数与整数规划的求满足QoS约束的最大数目的互不相交路由算法。该算法利用了路由模型的结构特性,使整数规划问题转化为线性规划问题,初步的算例表明算法是有效的。  相似文献   

18.
In this paper, we consider a new weapon‐target allocation problem with the objective of minimizing the overall firing cost. The problem is formulated as a nonlinear integer programming model, but it can be transformed into a linear integer programming model. We present a branch‐and‐price algorithm for the problem employing the disaggregated formulation, which has exponentially many columns denoting the feasible allocations of weapon systems to each target. A greedy‐style heuristic is used to get some initial columns to start the column generation. A branching strategy compatible with the pricing problem is also proposed. Computational results using randomly generated data show this approach is promising for the targeting problem. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   

19.
In a multifunction radar, the maximum number of targets that can be managed or tracked is an important performance measure. Interleaving algorithms developed to operate radars exploit the dead‐times between the transmitted and the received pulses to allocate new tracking tasks that might involve transmitting or receiving pulses, thus increasing the capacity of the system. The problem of interleaving N targets involves a search among N! possibilities, and suboptimal solutions are usually employed to satisfy the real‐time constraints of the radar system. In this paper, we present new tight 0–1 integer programming models for the radar pulse interleaving problem and develop effective solution methods based on Lagrangian relaxation techniques. © 2003 Wiley Periodicals, Inc. Naval Research Logistics, 2004.  相似文献   

20.
The minimum storage‐time sequencing problem generalizes many well‐known problems in combinatorial optimization, such as the directed linear arrangement and the problem of minimizing the weighted sum of completion times, subject to precedence constraints on a single processor. In this paper we propose a new lower bound, based on a Lagrangian relaxation, which can be computed very efficiently. To improve upon this lower bound, we employ a bundle optimization algorithm. We also show that the best bound obtainable by this approach equals the one obtainable from the linear relaxation computed on a formulation whose first Chvàtal closure equals the convex hull of all the integer solutions of the problem. © 2001 John Wiley & Sons, Inc. Naval Research Logistics 48: 313–331, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号